Glove-Based Classification of Hand Gestures for Arabic Sign Language Using Faster-CNN

Author:

Hassanein Ahmed M. D. E.,Mohamed Sarah H. A.,Pedram Kamran

Abstract

Recently, American Sign Language has been widely researched to help disabled people to communicate with others. However; the Arabic Sign Language “ASL” has received much less attention. This paper has proposed a smart glove which has been designed using flex sensors to collect a dataset about hand gestures applying ASL. The dataset is composed of resistance and voltage measurements for the bending of the fingers to represent alpha-numeric characters. The measurements are manipulated using normalization and zero referencing methods to create the dataset. A Convolutional Neural Network ‘CNN’ composed of twenty-one layers is proposed. The dataset is used to train the CNN, and the Accuracy and Loss parameters are used to characterize its success. The dataset is classified with an average success rate of 95% based on the classification accuracy. Loss has decreased from 3 to less than 0.5. The proposed CNN layers have classified ASL characters with a reasonable degree of accuracy.

Publisher

European Open Science Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3