Fuzzy rules-based Data Analytics and Machine Learning for Prognosis and Early Diagnosis of Coronary Heart Disease

Author:

Althaf Ali A.1,Umamaheswari S.2,Feroz Khan A. B.3,Jayabrabu Ramakrishnan4

Affiliation:

1. Madanapalle Institute of Technology & Science, Department of Computer Applications

2. C. Abdul Hakeem College of Engineering and Technology, Department of Information Technology

3. Syed Hameedha Arts and Science College, Department of Computer Science

4. Jazan University, College of Computer Science and Information Technology

Abstract

Globally, cardiovascular diseases stand as the primary cause of mortality. In response to the imperative to enhance operational efficiency and reduce expenses, healthcare organizations are currently undergoing a transformation. The incorporation of analytics into their IT strategy is vital for the successful execution of this transition. The approach involves consolidating data from various sources into a data lake, which is then leveraged with analytical models to revolutionize predictive analytics. The deployment of IoT-based predictive systems is aimed at diminishing mortality rates, particularly in the domain of coronary heart disease prognosis. However, the abundant and diverse nature of data across various disciplines poses significant challenges in terms of data analysis, extraction, management, and configuration within these large-scale data technologies and tools. In this context, a multi-level fuzzy rule generation approach is put forward to identify the characteristics necessary for heart disease prediction. These features are subsequently trained using an optimized recurrent neural network. Medical professionals assess and categorize the features into labeled classes based on the perceived risk. This categorization allows for early diagnosis and prompt treatment. In comparison to conventional systems, the proposed method demonstrates superior performance.

Publisher

Faculty of Organisation and Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3