Understanding Document Thematic Structure

Author:

Osuntoki Seun1,Odumuyiwa Victor1,Sennaike Oladipupo1

Affiliation:

1. Department of Computer Science Faculty of Science, University of Lagos

Abstract

The increasing usage of the Internet and other digital platforms has brought in the eraof big data with the attending increase in the quantity of unstructured data that isavailable for processing and storage. However, the full benefits of analyzing this largequantity of unstructured data will not be realized without proper techniques andalgorithms. Topic modeling algorithms have seen a major success in this area. Differenttopic modeling algorithms exist and each one either employs probabilistic or linearalgebra approaches. Recent reviews on topic modeling algorithms dwell majorly onprobabilistic methods without giving proper treatment to the linear-algebra-basedalgorithms. This review explores linear-algebra-based topic models as well asprobability-based topic models. An overview of how models generated by each of thesealgorithms represent document thematic structure is also presented

Publisher

Faculty of Organisation and Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3