Affiliation:
1. Department of Mathematics University of Setif
2. Department of Mathematics, Faculty of sciences University of Boumerdes
Abstract
Various physical, ecological, economic, etc phenomena are governed by planar differential systems. Sub- sequently, several research studies are interested in the study of limit cycles because of their interest in the understanding of these systems. The aim of this paper is to investigate a class of quintic Kolmogorov systems, namely systems of the form x=xP4 (x;y); y= y Q4 (x; y) ; where P4 and Q4 are quartic polynomials. Within this class, our attention is restricted to study the limit cycle in the realistic quadrant {(x; y) 2 R2; x > 0; y > 0}. According to the hypothesises, the existence of algebraic or non-algebraic limit cycle is proved. Furthermore, this limit cycle is explicitly given in polar coordinates. Some examples are presented in order to illustrate the applicability of our result
Publisher
Siberian Federal University
Subject
General Physics and Astronomy,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献