Abstract
The work is devoted to the study of continuation and stability estimation of the solution of the Cauchy problem for the biharmonic equation in the domain G from its known values on the smooth part of the boundary @G. The problem under consideration belongs to the problems of mathematical physics in which there is no continuous dependence of solutions on the initial data. In this work, using the Carleman function, not only the biharmonic function itself, but also its derivatives are restored from the Cauchy data on a part of the boundary of the region. The stability estimates for the solution of the Cauchy problem in the classical sense are obtained
Publisher
Siberian Federal University
Subject
General Physics and Astronomy,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. ЗАДАЧИ КОШИ ДЛЯ БИГАРМОНИЧЕСКОГО УРАВНЕНИЯ;Вестник Ошского государственного университета. Математика. Физика. Техника;2024-06-11
2. ЗАДАЧИ КОШИ ДЛЯ ЛИНЕЙНЫХ ЭЛЛИПТИЧЕСКИХ СИСТЕМ ПЕРВОГО ПОРЯДКА С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ В ТРЕХМЕРНОЙ ОГРАНИЧЕННОЙ ОБЛАСТИ;Вестник Ошского государственного университета. Математика. Физика. Техника;2024-06-11