Predicting Tumor Volume Doubling Time and Progression-Free Survival in Untreated Patients from Patient-Derived-Xenograft (PDX) Models: A Translational Model-Based Approach

Author:

Tosca E. M.ORCID,Ronchi D.,Rocchetti M.,Magni P.ORCID

Abstract

AbstractTumor volume doubling time (TVDT) has been shown to be a potential surrogate marker of biological tumor activity. However, its availability in clinics is strongly limited due to ethical and practical reasons, as its assessment requires at least two subsequent tumor volume measurements in untreated patients. Here, a translational modeling framework to predict TVDT distributions in untreated cancer patient populations from tumor growth data in patient-derived xenograft (PDX) mice is proposed. Eleven solid cancer types were considered. For each of them, a set of tumor growth studies in PDX mice was selected and analyzed through a mathematical model to characterize the distribution of the exponential tumor growth rate in mice. Then, assuming an exponential growth of the tumor mass in humans, the growth rates were scaled from PDX mice to humans through an allometric scaling approach and used to predict TVDTs in untreated patients. A very good agreement was found between model predicted and clinically observed TVDTs, with 91% of the predicted TVDT medians fell within 1.5-fold of observations. Further, exploiting the intrinsic relationship between tumor growth dynamics and progression free survival (PFS), the exponential growth rates in humans were used to generate the expected PFS curves in absence of anticancer treatment. Predicted curves were extremely close to published PFS data from studies involving patient cohorts treated with supportive care or low effective therapies. The proposed approach shows promise as a potential tool to increase knowledge about TVDT in humans without the need of directly measuring tumor dimensions in untreated patients, and to predict PFS curves in untreated patients, that could fill the absence of placebo-controlled arms against which to compare treaded arms during clinical trials. However, further validation and refinement are needed to fully assess its effectiveness in this regard.

Funder

Università degli Studi di Pavia

Publisher

Springer Science and Business Media LLC

Reference108 articles.

1. Schwartz M. A biomathematical approach to clinical tumor growth. Cancer. 1961;14(6):1272–94.

2. Friberg S. On the growth rates of human malignant tumors: Implications for medical decision making. Nowotwory. 2005;55(1):1–22.

3. Collins VP, Loeffler RK, Tivey H. Observations on growth rates of human tumors. Am J Roentgenol Radium Ther Nucl Med. 1956;76(5):988–1000.

4. Mehrara E, Forssell-Aronsson E. Analysis of inter-patient variations in tumour growth rate. Theor Biol Med Model. 2014;11(1):21.

5. Mehrara E, Forssell-Aronsson E, Ahlman H, Bernhardt P. Specific growth rate versus doubling time for quantitative characterization of tumor growth rate. Cancer Res. 2007;67(8):3970–5.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3