Biopharmaceutical Understanding of Excipient Variability on Drug Apparent Solubility Based on Drug Physicochemical Properties: Case Study—Hypromellose (HPMC)

Author:

Zarmpi P.,Flanagan T.,Meehan E.,Mann J.,Fotaki N.ORCID

Abstract

AbstractIdentification of the biopharmaceutical risks of excipients and excipient variability on oral drug performance can be beneficial for the development of robust oral drug formulations. The current study investigated the impact of Hypromellose (HPMC) presence and varying viscosity type, when used as a binder in immediate release formulations, on the apparent solubility of drugs with wide range of physicochemical properties (drug ionization, drug lipophilicity, drug aqueous solubility). The role of physiological conditions on the impact of excipients on drug apparent solubility was assessed with the use of pharmacopoeia (compendial) and biorelevant media. Presence of HPMC affected drug solubility according to the physicochemical properties of studied compounds. The possible combined effects of polymer adsorption (drug shielding effect) or the formation of a polymeric viscous layer around drug particles may have retarded drug dissolution leading to reduced apparent solubility of highly soluble and/or highly ionized compounds and were pronounced mainly at early time points. Increase in the apparent solubility of poorly soluble low ionized drugs containing a neutral amine group was observed which may relate to enhanced drug solubilization or reduced drug precipitation. The use of multivariate data analysis confirmed the importance of drug physicochemical properties on the impact of excipients on drug apparent solubility and revealed that changes in HPMC material properties or amount may not be critical for oral drug performance when HPMC is used as a binder. The construction of a roadmap combining drug, excipient, and medium characteristics allowed the identification of the cases where HPMC presence may present risks in oral drug performance and bioavailability.

Funder

University of Bath

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3