The Uses and Advantages of Kirchhoff’s Laws vs. Differential Equations in Pharmacology, Pharmacokinetics, and (Even) Chemistry

Author:

Benet Leslie Z.ORCID,Sodhi Jasleen K.

Abstract

AbstractIn chemistry, rate processes are defined in terms of rate constants, with units of time−1, and are derived by differential equations from amounts. In contrast, when considering drug concentrations in biological systems, particularly in humans, rate processes must be defined in terms of clearance, with units of volume/time, since biological volumes, which are highly dependent on drug partition into biological tissues, cannot be easily determined. In pharmacology, pharmacokinetics, and in making drug dosing decisions, drug clearance and changes in drug clearance are paramount. Clearance is defined as the amount of drug eliminated or moved divided by the exposure driving that elimination or movement. Historically, all clearance derivations in pharmacology and pharmacokinetics have been based on the use of differential equations in terms of rate constants and amounts, which are then converted into clearance equations when multiplied/divided by a hypothesized volume of distribution. Here, we show that except for iv bolus dosing, multiple volumes may be relevant. We have recently shown that clearance relationships, as well as rate constant relationships, may be derived independent of differential equations using Kirchhoff’s Laws from physics. Kirchhoff’s Laws may be simply translated to recognize that when two or more rate-defining processes operate in parallel, the total value of the overall reaction parameter is equal to the sum of those rate-defining processes. In contrast, when two or more rate-defining processes operate in series, the inverse of the total reaction parameter is equal to the sum of the inverse of those rate-defining steps. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3