Population-Based Pharmacodynamic Modeling of Omalizumab in Pediatric Patients with Moderate to Severe Persistent Inadequately Controlled Allergic Asthma

Author:

Zhu RuiORCID,Wang Xiaoning,Anderson Eric,Deng Michelle,Pivirotto Scott,Jin Jin,Kassir Nastya,Owen Ryan

Abstract

AbstractOmalizumab is the first approved anti-immunoglobulin E (IgE) agent for the treatment of moderate to severe persistent inadequately controlled allergic asthma in adults and adolescents (≥ 12 years old). In 2016, it was approved in pediatric patients (6–11 years old). The objective of this study was to quantitatively characterize the relationship between serum free IgE and pulmonary function (as measured by forced expiratory volume in 1 s [FEV1]) in pediatrics using a population-based pharmacodynamic model. Data collected during the steroid-stable period (first 24 weeks) of an omalizumab trial with pediatric asthma patients (Study IA05) were used to build the pediatric IgE–FEV1 model. The previously developed population IgE–FEV1 model in adults/adolescents was adapted to characterize the FEV1 and IgE relationship in pediatrics with different magnitude and onset of response. The pediatric IgE–FEV1 model adequately characterized the IgE–FEV1 relationship in pediatrics, particularly at the extremes of the observed body weights (i.e., ≤ 30 kg) and IgE values at screening (i.e., > 700 IU/mL). The estimated sigmoidal free IgE–FEV1 curves were similar in shape and maximum effect, but the estimated free IgE concentration leading to 50% maximum effect (IC50) in pediatric patients (39.4, 95% confidence interval [CI] 24.3–63.9 ng/mL) was higher than estimated in adults (19.8, 95% CI 15.1–24.5 ng/mL). The model further confirmed that the current omalizumab dosing rationale based on the mean target free IgE level of 25 ng/ml was appropriate. The pediatric model can be used to predict population FEV1 response for omalizumab when combined with an omalizumab pharmacokinetic–IgE model. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3