Development of an Aerosol Dose Collection Apparatus for In Vitro Dissolution Measurements of Orally Inhaled Drug Products

Author:

Price Robert,Shur Jagdeep,Ganley William,Farias Gonçalo,Fotaki Nikoletta,Conti Denise S.,Delvadia Renishkumar,Absar Mohammad,Saluja Bhawana,Lee Sau

Abstract

AbstractThe aim of the study was to develop a robust and standardized in vitro dissolution methodology for orally inhaled drug products (OIDPs). An aerosol dose collection (ADC) system was designed to uniformly deposit the whole impactor stage mass (ISM) over a large filter area for dissolution testing. All dissolution tests were performed under sink conditions in a sodium phosphate buffered saline solution containing 0.2%w/w sodium dodecyl sulphate. An adapted USP Apparatus V, Paddle over Disk (POD), was used throughout the study. The dissolution characteristics of the ISM dose of a commercial metered-dose inhaler (MDI) and a range of dry powder inhaler (DPI) formulations containing inhaled corticosteroids were tested. The uniform distribution of the validated ISM dose considerably reduced drug loading effects on the dissolution profiles for both MDI and DPI formulations. The improvement in the robustness and discriminatory capability of the technique enabled characterization of dissolution rate differences between inhaler platforms and between different DPI product strengths containing fluticasone propionate. A good correlation between in vivo mean absorption time and in vitro dissolution half-life was found for a range of the inhaled corticosteroids. The ADC system and the reproducible in vitro POD dissolution measurements provided a quantitative-based approach for measuring the relationship between the influence of device and the dispersion characteristics on the aerosol dissolution of low solubility compounds. The in vitro dissolution method could potentially be applied as a dissolution methodology for compendial, quality control release testing, and during development of both branded orally inhaled drug products and their generic counterparts.

Funder

University of Bath

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science

Reference22 articles.

1. Patton JS, Brain JD, Davies LA, Fiegel J, Gumbleton M, Kim K-J, et al. The particle has landed - characterizing the fate of inhaled pharmaceuticals. J Aerosol Med Pulmonary Drug Deliv. 2010;23:S–71–87.

2. Lu D, Lee SL, Lionberger RA, Choi S, Adams W, Caramenico HN, et al. International guidelines for bioequivalence of locally acting orally inhaled drug products: similarities and differences. AAPS J Springer US. 2015;17:546–57.

3. Hastedt JE, Bäckman P, Clark AR, Doub W, Hickey A, Hochhaus G, et al. Scope and relevance of a pulmonary biopharmaceutical classification system AAPS/FDA/USP workshop March 16-17th, 2015 in Baltimore, MD. AAPS Open 2016 2:1. 2nd ed. Springer International Publishing; 2016;2:1.

4. Bäckman P, Adelmann H, Petersson G, Jones CB. Advances in inhaled technologies: understanding the therapeutic challenge, predicting clinical performance, and designing the optimal inhaled product. Clin Pharmacol Ther. 2014;95:509–20.

5. Olsson B, Bäckman P. Mouth-throat models for realistic in vitro testing – a proposal for debate. In: Dalby RN, Byron PR, Peart J, et al., editors. Proceedings of respiratory drug delivery 2014. River Grove, IL: DHI Publishing; 2014;1. p. 287–94.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3