Population Pharmacodynamic Modeling of Eflornithine-Based Treatments Against Late-Stage Gambiense Human African Trypanosomiasis and Efficacy Predictions of L-eflornithine-Based Therapy

Author:

Amilon Carl,Boberg MikaelORCID,Tarning Joel,Äbelö Angela,Ashton Michael,Jansson-Löfmark Rasmus

Abstract

AbstractEflornithine is a recommended treatment against late-stage gambiense human African trypanosomiasis, a neglected tropical disease. Standard dosing of eflornithine consists of repeated intravenous infusions of a racemic mixture of L- and D-eflornithine. Data from three clinical studies, (i) eflornithine intravenous monotherapy, (ii) nifurtimox-eflornithine combination therapy, and (iii) eflornithine oral monotherapy, were pooled and analyzed using a time-to-event pharmacodynamic modeling approach, supported by in vitro activity data of the individual enantiomers. Our aim was to assess (i) the efficacy of the eflornithine regimens in a time-to-event analysis and (ii) the feasibility of an L-eflornithine-based therapy integrating clinical and preclinical data. A pharmacodynamic time-to-event model was used to estimate the total dose of eflornithine, associated with 50% reduction in baseline hazard, when administered as monotherapy or in the nifurtimox-eflornithine combination therapy. The estimated total doses were 159, 60 and 291 g for intravenous eflornithine monotherapy, nifurtimox-eflornithine combination therapy and oral eflornithine monotherapy, respectively. Simulations suggested that L-eflornithine achieves a higher predicted median survival, compared to when racemate is administered, as treatment against late-stage gambiense human African trypanosomiasis. Our findings showed that oral L-eflornithine-based monotherapy would not result in adequate efficacy, even at high dose, and warrants further investigations to assess the potential of oral L-eflornithine-based treatment in combination with other treatments such as nifurtimox. An all-oral eflornithine-based regimen would provide easier access to treatment and reduce burden on patients and healthcare systems in gambiense human African trypanosomiasis endemic areas.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3