Machine Learning–Enabled NIR Spectroscopy. Part 2: Workflow for Selecting a Subset of Samples from Publicly Accessible Data

Author:

Ali Hussain,Muthudoss Prakash,Ramalingam Manikandan,Kanakaraj Lakshmi,Paudel Amrit,Ramasamy Gobi

Abstract

Abstract An increasingly large dataset of pharmaceutics disciplines is frequently challenging to comprehend. Since machine learning needs high-quality data sets, the open-source dataset can be a place to start. This work presents a systematic method to choose representative subsamples from the existing research, along with an extensive set of quality measures and a visualization strategy. The preceding article (Muthudoss et al.. in AAPS PharmSciTech 23, 2022) describes a workflow for leveraging near infrared (NIR) spectroscopy to obtain reliable and robust data on pharmaceutical samples. This study describes the systematic and structured procedure for selecting subsamples from the historical data. We offer a wide range of in-depth quality measures, diagnostic tools, and visualization techniques. A real-world, well-researched NIR dataset was employed to demonstrate this approach. This open-source tablet dataset (http://www.models.life.ku.dk/Tablets) consists of different doses in milligrams, different shapes, and sizes of dosage forms, slots in tablets, three different manufacturing scales (lab, pilot, production), coating differences (coated vs uncoated), etc. This sample is appropriate; that is, the model was developed on one scale (in this research, the lab scale), and it can be great to investigate how well the top models are transferable when tested on new data like pilot-scale or production (full) scale. A literature review indicated that the PLS regression models outperform artificial neural network-multilayer perceptron (ANN-MLP). This work demonstrates the selection of appropriate hyperparameters and their impact on ANN-MLP model performance. The hyperparameter tuning approaches and performance with available references are discussed for the data under investigation. Model extension from lab-scale to pilot-scale/production scale is demonstrated. Highlights • We present a comprehensive quality metrics and visualization strategy in selecting subsamples from the existing studies • A comprehensive assessment and workflow are demonstrated using historical real-world near-infrared (NIR) data sets • Selection of appropriate hyperparameters and their impact on artificial neural network-multilayer perceptron (ANN-MLP) model performance • The choice of hyperparameter tuning approaches and performance with available references are discussed for the data under investigation • Model extension from lab-scale to pilot-scale successfully demonstrated Graphical Abstract

Funder

Graz University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Drug Discovery,Pharmaceutical Science,Agronomy and Crop Science,Ecology,Aquatic Science,General Medicine,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3