Coating Lacticaseibacillus rhamnosus GG in Alginate Systems: an Emerging Strategy Towards Improved Viability in Orange Juice

Author:

Bonaccorso Angela,Russo Nunziatina,Romeo Alessia,Carbone Claudia,Grimaudo Maria Aurora,Alvarez-Lorenzo Carmen,Randazzo Cinzia,Musumeci TeresaORCID,Caggia Cinzia

Abstract

AbstractFruit juices are successfully proposed as suitable probiotic vehicles, but researchers’ efforts should be developed to avoid effects of bacteria overgrowing on sensory and nutritional cues of final products and to preserve viability of probiotic bacteria during storage. In the present study, encapsulation of Lacticaseibacillus rhamnosus GG strain in alginate systems was performed through ionotropic gelation technology. The alginate systems were optimized by using Box-Behnken Design to investigate the influence of three independent variables at three different levels: particle mean size and polydispersity index. The optimized probiotic-loaded alginate particles were added to orange juice samples. The viability of the probiotic strain, both as free and microencapsulated, was evaluated in orange juice stored at 5°C for 35 days. Morphology and size of probiotic-loaded alginate particles were found suitable for incorporation into juice. TEM analysis revealed that unloaded systems were clustered as nanoparticles (CL_NP), while the loaded sample appeared as a coated system (Coated_LGG). Microbiological evaluation revealed that the encapsulation assured the survival of Coated_LGG, with a reduction of less than 1-unit log in cellular density after 35 days of refrigerated storage in orange juice. Results indicated that the encapsulated bacteria did not affect the macroscopic properties neither the microbiological characteristic of orange juice; thus, it can be proposed as functional food.

Funder

Università degli Studi di Catania

Publisher

Springer Science and Business Media LLC

Subject

Drug Discovery,Pharmaceutical Science,Agronomy and Crop Science,Ecology,Aquatic Science,General Medicine,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3