Abstract
AbstractIncreasing the drug tumor-specific accumulation and controlling their release is considered one of the most effective ways to increase the efficacy of drugs. Here, we developed a vesicle system that can target hepatoma and release drugs rapidly within tumor cells. This non-ionic surfactant vesicle is biodegradable. Galactosylated stearate has been used to glycosylate the vesicles to achieve liver targeting; replacement of a portion (Chol:CHEMS = 1:1) of cholesterol by cholesteryl hemisuccinate (CHEMS) allows for a rapid release of drugs in an acidic environment. In vitro release experiments confirmed that galactose-modified pH-sensitive niosomes loaded with tanshinone IIA had excellent drug release performance in acid medium. In vitro experiments using ovarian cancer cells (A2780), colon cancer cells (HCT8), and hepatoma cell (Huh7, HepG2) confirmed that the preparation had specific targeting ability to hepatoma cells compared with free drugs, and this ability was dependent on the galactose content. Furthermore, the preparation also had a more substantial inhibitory effect on tumor cells, and subsequent apoptosis assays and cell cycle analyses further confirmed its enhanced anti-tumor effect. Results of pharmacokinetic experiments confirmed that the vesicle system could significantly extend the blood circulation time of tanshinone IIA, and the larger area under the curve indicated that the preparation had a better drug effect. Thus, the results of biodistribution experiments confirmed the in vivo liver targeting ability of this preparation. Niosomes designed in this manner are expected to be a safe and effective drug delivery system for liver cancer therapy.
Publisher
Springer Science and Business Media LLC
Subject
Drug Discovery,Pharmaceutical Science,Agronomy and Crop Science,Ecology,Aquatic Science,General Medicine,Ecology, Evolution, Behavior and Systematics
Reference53 articles.
1. Monteiro L, Fernandes RS, Oda C, Lopes SC, Townsend DM, Cardoso VN, et al. Paclitaxel-loaded folate-coated long circulating and pH-sensitive liposomes as a potential drug delivery system: a biodistribution study. Biomed Pharmacother. 2018;97:489–95. https://doi.org/10.1016/j.biopha.2017.10.135.
2. Cui FD. Pharmacy. In: Wu CB, Lv WL, editors. Preparation technology of particle dispersion system. Beijing: People’s Health Press; 2014. p. 402.
3. Wang YP. Study on the preparation and quality evaluation of aloe emodin niosomes. Dissertation, China Academy of Chinese Medical Sciences, Beijing; 2014.
4. Riccardi C, Fabrega C, Grijalvo S, Vitiello G, D'Errico G, Eritja R, et al. AS1411-decorated niosomes as effective nanocarriers for Ru(iii)-based drugs in anticancer strategies. J Mater Chem B. 2018;6(33):5368–84. https://doi.org/10.1039/c8tb01563e.
5. CFDA. Pharmacopoeia of the People’s Republic of China. 1st section. Beijing: The Medicine Science and Technology Press of China; 2015. p. 398.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献