The Use of Spatio-Temporal Connectionist Models in Psychological Studies of Musical Emotions

Author:

Coutinho Eduardo1,Cangelosi Angelo1

Affiliation:

1. University of Plymouth, Plymouth, Devon, United Kingdom

Abstract

THIS ARTICLE PRESENTS A NOVEL METHODOLOGY TO analyze the dynamics of emotional responses to music. It consists of a computational investigation based on spatiotemporal neural networks, which "mimic" human affective responses to music and predict the responses to novel music sequences. The results provide evidence suggesting that spatiotemporal patterns of sound resonate with affective features underlying judgments of subjective feelings (arousal and valence). A significant part of the listener's affective response is predicted from a set of six psychoacoustic features of sound——loudness, tempo, texture, mean pitch, pitch variation, and sharpness. A detailed analysis of the network parameters and dynamics also allows us to identify the role of specific psychoacoustic variables (e.g., tempo and loudness) in music emotional appraisal. This work contributes new evidence and insights to the study of musical emotions, with particular relevance to the music perception and cognition research community.

Publisher

University of California Press

Subject

Music

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The sound of stress recovery: an exploratory study of self-selected music listening after stress;BMC Psychology;2023-02-10

2. Curiosity Emerging From the Perception of Change in Music;Empirical Studies of the Arts;2021-12-16

3. Video Affective Content Analysis by Exploring Domain Knowledge;IEEE Transactions on Affective Computing;2021-10-01

4. An investigation into the nature and function of metaphor in advanced music instruction;Research Studies in Music Education;2018-09-19

5. Key-finding by artificial neural networks that learn about key profiles.;Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale;2018-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3