Pitch Spelling: A Computational Model

Author:

Cambouropoulos Emilios

Abstract

In this article, cognitive and musicological aspects of pitch and pitch interval representations are explored via computational modeling. The specific task under investigation is pitch spelling, that is, how traditional score notation can be derived from a simple unstructured 12-tone representation (e.g., pitch-class set or MIDI pitch representation). This study provides useful insights both into the domain of pitch perception and into musicological aspects of score notation strategies. A computational model is described that transcribes polyphonic MIDI pitch files into the Western traditional music notation. Input to the proposed algorithm is merely a sequence of MIDI pitch numbers in the order they appear in a MIDI file. No a priori knowledge such as key signature, tonal centers, time signature, chords, or voice separation is required. Output of the algorithm is a sequence of "correctly" spelled pitches. The algorithm is based on an interval optimization approach that takes into account the frequency of occurrence of pitch intervals within the major-minor tonal scale framework. The algorithm was evaluated on 10 complete piano sonatas by Mozart and had a success rate of 98.8% (634 pitches were spelled incorrectly out of a total of 54,418 notes); it was tested additionally on three Chopin waltzes and had a slightly worse success rate. The proposed pitch interval optimization approach is also compared with and tested against other pitch-spelling strategies.

Publisher

University of California Press

Subject

Music

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The line of fifths and the co-evolution of tonal pitch-classes;Journal of Mathematics and Music;2022-03-17

2. Discovering Tonal Profiles with Latent Dirichlet Allocation;Music & Science;2021-01

3. Music Information Processing for Visualization with Musical Notations;Journal of the Visualization Society of Japan;2020

4. An algorithm for spelling the pitches of any musical scale;Information Sciences;2019-01

5. Automatic Music Transcription: An Overview;IEEE Signal Processing Magazine;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3