The Effects of Timbre on Neural Responses to Musical Emotion

Author:

Zhang Weixia1,Liu Fang2,Zhou Linshu1,Wang Wanqi1,Jiang Hanyuan3,Jiang Cunmei1

Affiliation:

1. Shanghai Normal University, Shanghai, China

2. University of Reading, Reading, United Kingdom

3. Macau University of Science and Technology, Macau, China

Abstract

Timbre is an important factor that affects the perception of emotion in music. To date, little is known about the effects of timbre on neural responses to musical emotion. To address this issue, we used ERPs to investigate whether there are different neural responses to musical emotion when the same melodies are presented in different timbres. With a cross-modal affective priming paradigm, target faces were primed by affectively congruent or incongruent melodies without lyrics presented in the violin, flute, and voice. Results showed a larger P3 and a larger left anterior distributed LPC in response to affectively incongruent versus congruent trials in the voice version. For the flute version, however, only the LPC effect was found, which was distributed over centro-parietal electrodes. Unlike the voice and flute versions, an N400 effect was observed in the violin version. These findings revealed different patterns of neural responses to musical emotion when the same melodies were presented in different timbres, and provide evidence for the hypothesis that there are specialized neural responses to the human voice.

Publisher

University of California Press

Subject

Music

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. References;neuroAI;2024-08-23

2. Play it again, but more sadly: Influence of timbre, mode, and musical experience in melody processing;Memory & Cognition;2024-08-02

3. Musical Melody and Emotional Evocation - An Empirical Study from Statistical Analysis;Applied Mathematics and Nonlinear Sciences;2024-01-01

4. Analysis of Artistic Instruction and Emotional Expression Pathways in College Piano Performance in the Internet Era;Applied Mathematics and Nonlinear Sciences;2024-01-01

5. Music Recognition and Classification Recommendation Based on Convolutional Neural Network;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3