A Whole Brain EEG Analysis of Musicianship

Author:

Ribeiro Estela1,Thomaz Carlos Eduardo1

Affiliation:

1. Centro Universitario FEI, Sao Bernardo do Campo, Brazil

Abstract

The neural activation patterns provoked in response to music listening can reveal whether a subject did or did not receive music training. In the current exploratory study, we have approached this two-group (musicians and nonmusicians) classification problem through a computational framework composed of the following steps: Acoustic features extraction; Acoustic features selection; Trigger selection; EEG signal processing; and Multivariate statistical analysis. We are particularly interested in analyzing the brain data on a global level, considering its activity registered in electroencephalogram (EEG) signals on a given time instant. Our experiment's results—with 26 volunteers (13 musicians and 13 nonmusicians) who listened the classical music Hungarian Dance No. 5 from Johannes Brahms—have shown that is possible to linearly differentiate musicians and nonmusicians with classification accuracies that range from 69.2% (test set) to 93.8% (training set), despite the limited sample sizes available. Additionally, given the whole brain vector navigation method described and implemented here, our results suggest that it is possible to highlight the most expressive and discriminant changes in the participants brain activity patterns depending on the acoustic feature extracted from the audio.

Publisher

University of California Press

Subject

Music

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3