Projections of physical conditions in the Gulf of Maine in 2050

Author:

Brickman Dave1,Alexander Michael A.2,Pershing Andrew3,Scott James D.24,Wang Zeliang1

Affiliation:

1. Fisheries and Oceans Canada/Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada

2. NOAA Physical Sciences Laboratory, Boulder, CO, USA

3. Climate Central, Inc., Princeton, NJ, USA

4. University of Colorado, CIRES, Boulder, CO, USA

Abstract

The Gulf of Maine (GoM) is currently experiencing its warmest period in the instrumental record. Two high-resolution numerical ocean models were used to downscale global climate projections to produce four estimates of ocean physical properties in the GoM in 2050 for the “business as usual” carbon emission scenario. All simulations project increases in the GoM mean sea surface temperature (of 1.1 °C–2.4 °C) and bottom temperature (of 1.5 °C–2.1 °C). In terms of mean vertical structure, all simulations project temperature increases throughout the water column (surface-to-bottom changes of 0.2 °C–0.5 °C). The GoM volume-averaged changes in temperature range from 1.5 °C to 2.3 °C. Translated to rates, the sea surface temperature projections are all greater than the observed 100-year rate, with two projections below and two above the observed 1982–2013 rate. Sea surface salinity changes are more variable, with three of four simulations projecting decreases. Bottom salinity changes vary spatially and between projections, with three simulations projecting varying increases in deeper waters but decreases in shallower zones and one simulation projecting a salinity increase in all bottom waters. In terms of mean vertical structure, salinity structure varies, with two simulations projecting surface decreases that switch sign with depth and two projecting increases throughout the (subsurface) water column. Three simulations show a difference between coastal and deeper waters whereby the coastal zone is projected to be systematically fresher than deeper waters, by as much as 0.2 g kg–1. Stratification, 50 m to surface, is projected to increase in all simulations, with rates ranging from 0.003 to 0.006 kg m–4 century–1 which are lower than the observed change on the Scotian Shelf. The results from these simulations can be used to assess potential acidification and ecosystem changes in the GoM.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3