Projecting regions of North Atlantic right whale, Eubalaena glacialis, habitat suitability in the Gulf of Maine for the year 2050

Author:

Ross Camille H.12,Pendleton Daniel E.3,Tupper Benjamin1,Brickman David4,Zani Monica A.3,Mayo Charles A.5,Record Nicholas R.1

Affiliation:

1. Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA

2. Colby College, Waterville, ME, USA

3. Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA

4. Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS, Canada

5. Center for Coastal Studies, Provincetown, MA, USA

Abstract

North Atlantic right whales (Eubalaena glacialis) are critically endangered, and recent changes in distribution patterns have been a major management challenge. Understanding the role that environmental conditions play in habitat suitability helps to determine the regions in need of monitoring or protection for conservation of the species, particularly as climate change shifts suitable habitat. This study used three species distribution modeling algorithms, together with historical whale abundance data (1993–2009) and environmental covariate data, to build monthly ensemble models of past E. glacialis habitat suitability in the Gulf of Maine. The model was projected onto the year 2050 for a range of climate scenarios. Specifically, the distribution of the species was modeled using generalized additive models, boosted regression trees, and artificial neural networks, with environmental covariates that included sea surface temperature, bottom water temperature, bathymetry, a modeled Calanus finmarchicus habitat index, and chlorophyll. Year-2050 projections used downscaled climate anomaly fields from Representative Concentration Pathway 4.5 and 8.5. The relative contribution of each covariate changed seasonally, with an increase in the importance of bottom temperature and C. finmarchicus in the summer, when model performance was highest. A negative correlation was observed between model performance and sea surface temperature contribution. The 2050 projections indicated decreased habitat suitability across the Gulf of Maine in the period from July through October, with the exception of narrow bands along the Scotian Shelf. The results suggest that regions outside of the current areas of conservation focus may become increasingly important habitats for E. glacialis under future climate scenarios.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3