Seasonality, sources and sinks of C1–C5 alkyl nitrates in the Colorado Front Range

Author:

Abeleira A.1ORCID,Sive B.2,Swarthout Robert F.3,Fischer Emily V.4,Zhou Y.4,Farmer D. K.1

Affiliation:

1. Department of Chemistry, Colorado State University, Fort Collins, Colorado, US

2. National Park Service, Air Resources Division, Lakewood, Colorado, US

3. Department of Chemistry, Appalachian State University, Boone, North Carolina, US

4. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, US

Abstract

We describe observations of C1–C5 alkyl nitrates made at the Boulder Atmospheric Observatory in Northern Colorado in winter 2011, spring 2015, and summer 2015. Average mixing ratios of the alkyl nitrates are similar across the seasons, but increased diel variability in summer suggests increased production balanced by increased loss relative to winter and spring. We use a sequential production-destruction model based on ratios of alkyl nitrates to their parent alkanes to investigate seasonal sources and sinks of C1–C5 alkyl nitrates. We explore the role of uncertainties in the production and loss kinetic parameters on the interpretation of local atmospheric photochemical aging through the use of a photochemical clock based on the evolution of the ratios of alkyl nitrates to their parent alkanes over time. Photochemical age is typically consistent with hours from sunrise, suggesting that the site experiences well-mixed air masses dominated by daily photochemistry with little carry-over from the previous day or from other locations. Contrary to studies in other locations, we obtain good model-measurement agreement using a newer upper-bound ethyl nitrate branching ratios. This suggests that the efficiency of ethyl nitrate production from ethane oxidation has previously been underestimated, and decreases the relative importance of alkoxy radical decomposition versus ethane photochemistry on ethyl nitrate production. We estimate the dry deposition velocity of methyl nitrates is small and consistent with previous estimates, and that deposition velocities increase with carbon number for the C2–C5 RONO2. Dry deposition is a small daytime sink relative to photolysis and reaction with OH for the alkyl nitrates, but improves the model-measurement comparison for methyl nitrate.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3