Sources of carbon to suspended particulate organic matter in the northern Gulf of Mexico

Author:

Rogers Kelsey L.12ORCID,Bosman Samantha H.2,Weber Sarah3,Magen Cedric4,Montoya Joseph P.5,Chanton Jeffrey P.2

Affiliation:

1. Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, DK

2. Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, US

3. Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, DE

4. University of Maryland Center for Environmental Studies, Chesapeake Biological Laboratory, Solomons, Maryland, US

5. School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, US

Abstract

Suspended particulate organic carbon (POCsusp) in the Gulf of Mexico is unique compared to other seas and oceans. In addition to surface primary production, isotopic analysis indicates that microbial cycling of oil and riverine inputs are primary sources of carbon to POCsusp in the Gulf. To characterize POCsusp from seep sites and non-seep north central Gulf (NCG) sites potentially affected by the Deepwater Horizon (DWH) spill, we analyzed 277 and 123 samples for δ13C and Δ14C signatures, respectively. Depth, partitioned into euphotic (<300 m) and deep (>300 m), was the main driver of spatial δ13C differences, with deep depths exhibiting 13C depletion. Both deep depths and proximity to sources of natural seepage resulted in 14C depletion. A two-endmember mixing model based on Δ14C indicated that sources to POCsusp were 14–29% fossil carbon at NCG sites and 19–57% at seep sites, with the balance being modern surface production. A six-component Bayesian mixing model MixSIAR, using both 13C and 14C, suggested that riverine inputs were an important carbon source to POCsusp contributing 34–46%. The influence of seeps was localized. Below the euphotic zone at seep sites, 46 ± 5% (n = 9) of the carbon in POCsusp was derived from environmentally degraded, transformed oil; away from seeps, transformed oil contributed 15 ± 4% (n = 39). We hypothesized that, at NCG sites removed from hydrocarbon seep sources, isotopic signatures would be depleted following the spill and then shift towards background-like enriched values over time. At deep depths we observed decreasing Δ14C signatures in POCsusp from 2010 to 2012, followed by isotopic enrichment from 2012 to 2014 and a subsequent recovery rate of 159‰ per year, consistent with this hypothesis and with biodegraded material from DWH hydrocarbons contributing to POCsusp.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3