High-resolution spatial and temporal measurements of particulate organic carbon flux using thorium-234 in the northeast Pacific Ocean during the EXport Processes in the Ocean from RemoTe Sensing field campaign

Author:

Buesseler Ken O.1,Benitez-Nelson Claudia R.2,Roca-Martí Montserrat1,Wyatt Abigale M.3,Resplandy Laure3,Clevenger Samantha J.14,Drysdale Jessica A.1,Estapa Margaret L.56,Pike Steven1,Umhau Blaire P.2

Affiliation:

1. Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States

2. School of the Earth, Ocean and Environment, University of South Carolina, Columbia, South Carolina, United States

3. Department of Geosciences, Princeton University, Princeton, New Jersey, United States

4. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States

5. Geosciences Department, Skidmore College, Saratoga Springs, New York, United States

6. Darling Marine Center, School of Marine Sciences, University of Maine, Walpole, Maine, United States

Abstract

The EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) program of National Aeronautics and Space Administration focuses on linking remotely sensed properties from satellites to the mechanisms that control the transfer of carbon from surface waters to depth. Here, the naturally occurring radionuclide thorium-234 was used as a tracer of sinking particle flux. More than 950 234Th measurements were made during August–September 2018 at Ocean Station Papa in the northeast Pacific Ocean. High-resolution vertical sampling enabled observations of the spatial and temporal evolution of particle flux in Lagrangian fashion. Thorium-234 profiles were remarkably consistent, with steady-state (SS) 234Th fluxes reaching 1,450 ± 300 dpm m−2 d−1 at 100 m. Nonetheless, 234Th increased by 6%–10% in the upper 60 m during the cruise, leading to consideration of a non-steady-state (NSS) model and/or horizontal transport, with NSS having the largest impact by decreasing SS 234Th fluxes by 30%. Below 100 m, NSS and SS models overlapped. Particulate organic carbon (POC)/234Th ratios decreased with depth in small (1–5 μm) and mid-sized (5–51 μm) particles, while large particle (>51 μm) ratios remained relatively constant, likely influenced by swimmer contamination. Using an average SS and NSS 234Th flux and the POC/234Th ratio of mid-sized particles, we determined a best estimate of POC flux. Maximum POC flux was 5.5 ± 1.7 mmol C m−2 d−1 at 50 m, decreasing by 70% at the base of the primary production zone (117 m). These results support earlier studies that this site is characterized by a modest biological carbon pump, with an export efficiency of 13% ± 5% (POC flux/net primary production at 120 m) and 39% flux attenuation in the subsequent 100 m (POC flux 220 m/POC flux 120m). This work sets the foundation for understanding controls on the biological carbon pump during this EXPORTS campaign.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3