Sediment contributing invasive dreissenid species in a calcareous shallow lake – Possible implications for shortening life span of lakes by filling

Author:

Báldi Katalin1ORCID,Balogh Csilla23,Sztanó Orsolya1,Buczkó Krisztina45,Muskó Ilona Bedéné2,G.-Tóth László26,Serfőző Zoltán23

Affiliation:

1. Eötvös University, Department of Physical and Applied Geology, Budapest, HU

2. MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, HU

3. MTA Centre for Ecological Research, GINOP Sustainable Ecosystems Group, Tihany, HU

4. Hungarian Natural History Museum, Department of Botany, Budapest, HU

5. MTA Centre for Ecological Research, Danube Research Institute, Budapest, HU

6. Szent István University, Faculty of Economics and Social Sciences, Institute of Regional Economics and Rural Development, Gödöllő, HU

Abstract

Although the ecosystem transforming impact of the invasive dreissenid mussels has been widely reported in short-to-mid time scale studies, little is known about the contribution of the spent shells to sediments accumulating on the lake bottom. The question whether the shell production significantly reduces the lifespan of the lake by increasing sedimentation rate is particularly interesting in those shallow lakes where the calcium supply is sufficient to maintain the high mussel biomass production permanently, and where the alkaline water does not favor shell dissolution. Lake Balaton, a large calcareous, shallow lake in Central Europe invaded by dreissenids (Dreissena polymorpha, Dreissena rostriformis bugensis), provides an ideal testing ground for this scenario. Therefore, we made calculations based on recent population abundance datasets (2000–2018), estimated the whole habitable, hard surface coastline and the muddy bottom of the pelagic area which is also gradually becoming inhabited by D. r. bugensis, using high resolution aerial photographs and analyzing seismic sections. We created four scenarios: (1) if no dreissenids are present (applying basic sedimentation rate); (2) if D. r. bugensis had not been introduced to the lake (only D. polymorpha); (3) if D. r. bugensis occupies the hard surfaces of the coastline (the current dominant situation); (4) if D. r. bugensis colonizes the entire lake bottom (a probable future model). Different sedimentation rates obtained from the literature were used to model the filling of Lake Balaton. The shell production of the new invader, D. r. bugensis can shorten the lake’s lifespan by one to two-thirds, depending on the model, and whether the mussel density currently observed at the shoreline is extended to the whole lake bottom. Attention is called to shallow calcareous lakes with low pre-invasion sedimentation rates in which the shell contribution of invasive mollusks has the potential to shorten lifespan.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3