Insights on sources and formation mechanisms of liquid-bearing clouds over MOSAiC examined from a Lagrangian framework

Author:

Silber Israel1,Shupe Matthew D.23

Affiliation:

1. Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA

2. Cooperative Institute for Research in Environmental Science, Boulder, CO, USA

3. NOAA/Physical Sciences Laboratory, Boulder, CO, USA

Abstract

Understanding Arctic stratiform liquid-bearing cloud life cycles and properly representing these life cycles in models is crucial for evaluations of cloud feedbacks as well as the faithfulness of climate projections for this rapidly warming region. Examination of cloud life cycles typically requires analyses of cloud evolution and origins on short time scales, on the order of hours to several days. Measurements from the recent Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition provide a unique view of the current state of the central Arctic over an annual cycle. Here, we use the MOSAiC radiosonde measurements to detect liquid-bearing cloud layers over full atmospheric columns and to examine the cloud-generating air masses’ properties. We perform 5-day (120 h) back-trajectory calculations for every detected cloud and cluster them using a unique set of variables extracted from these trajectories informed by ERA5 reanalysis data. This clustering method enables us to separate between the air mass source regions such as ice-covered Arctic and midlatitude open water. We find that moisture intrusions into the central Arctic typically result in multilayer liquid-bearing cloud structures and that more than half of multilayer profiles include overlying liquid-bearing clouds originating in different types of air masses. Finally, we conclude that Arctic cloud formation via prolonged radiative cooling of elevated stable subsaturated air masses circulating over the Arctic can occur frequently (up to 20% of detected clouds in the sounding data set) and may lead to a significant impact of ensuing clouds on the surface energy budget, including net surface warming in some cases.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3