Developing technological synergies between deep-sea and space research
Author:
Aguzzi Jacopo12, Flögel Sascha3, Marini Simone24, Thomsen Laurenz5, Albiez Jan6, Weiss Peter7, Picardi Giacomo89, Calisti Marcello10, Stefanni Sergio2, Mirimin Luca11, Vecchi Fabrizio2, Laschi Cecilia12, Branch Andrew13, Clark Evan B.13, Foing Bernard14, Wedler Armin15, Chatzievangelou Damianos1, Tangherlini Michael2, Purser Autun16, Dartnell Lewis17, Danovaro Roberto218
Affiliation:
1. Functioning and Vulnerability of Marine Ecosystems Group, Department of Renewable Marine Resources, Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, Spain 2. Stazione Zoologica Anton Dohrn (SZN), Naples, Italy 3. GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany 4. National Research Council of Italy (CNR), Institute of Marine Sciences, La Spezia, Italy 5. OceanLab, Department of Physics and Earth Sciences, Jacobs University, Bremen, Germany 6. Kraken Robotics, Bremen, Germany 7. Spartan Space, Marseille, France 8. The BioRobotics Institute—Scuola Superiore Sant’Anna (SSAA), Pisa, Italy 9. Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy 10. Lincoln Institute for Agri-food Technology, University of Lincoln, Lincoln, UK 11. Galway Mayo Institute of Technology (GMIT), Galway, Ireland 12. Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore 13. Jet Propulsion Laboratory (JPL), California Institute of Technology (CalTech), Pasadena, CS, USA 14. ILEWG EuroMoonMars, Leiden University & VU Amsterdam, Leiden/Amsterdam, the Netherlands 15. Institut für Robotik und Mechatronik, Deutsches Zentrum für Luft- und Raumfahrt, Weßling, Germany 16. Alfred Wegener Institute (AWI) for Polar and Marine Research, Bremenhaven, Germany 17. School of Life Sciences, University of Westminster; London, United Kingdom 18. Department of Life and Environmental Science, Polytechnic University of Marche, Ancona, Italy
Abstract
Recent advances in robotic design, autonomy and sensor integration create solutions for the exploration of deep-sea environments, transferable to the oceans of icy moons. Marine platforms do not yet have the mission autonomy capacity of their space counterparts (e.g., the state of the art Mars Perseverance rover mission), although different levels of autonomous navigation and mapping, as well as sampling, are an extant capability. In this setting their increasingly biomimicked designs may allow access to complex environmental scenarios, with novel, highly-integrated life-detecting, oceanographic and geochemical sensor packages. Here, we lay an outlook for the upcoming advances in deep-sea robotics through synergies with space technologies within three major research areas: biomimetic structure and propulsion (including power storage and generation), artificial intelligence and cooperative networks, and life-detecting instrument design. New morphological and material designs, with miniaturized and more diffuse sensor packages, will advance robotic sensing systems. Artificial intelligence algorithms controlling navigation and communications will allow the further development of the behavioral biomimicking by cooperating networks. Solutions will have to be tested within infrastructural networks of cabled observatories, neutrino telescopes, and off-shore industry sites with agendas and modalities that are beyond the scope of our work, but could draw inspiration on the proposed examples for the operational combination of fixed and mobile platforms.
Publisher
University of California Press
Subject
Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography
Reference143 articles.
1. Agostini, M, Böhmer, M, Bosma, J, Clark, K, Danninger, M, Fruck, C, Gernhäuser, R, Gärtner, A, Grant, D, Henningsen, F, Holzapfel, K, Huber, M, Jenkyns, R, Krauss, CB, Krings, K, Kopper, K, Leismüller, K, Leys, S, Macoun, P, Meighen-Berger, S, Michel, J, Moore, R, Morley, M, Padovani, P, Papp, L, Pirenne, P, Qiu, C, Carmen Rea, I, Resconi, E, Round, A, Ruskey, A, Spannfellner, C, Traxler, M, Turcati, A, Yanez, JP.2020. The Pacific Ocean neutrino experiment. Nature Astronomy4: 913–915. DOI: http://dx.doi.org/10.1038/s41550-020-1182-4. 2. Aguado, E, Milosevic, Z, Hernández, C, Sanz, R, Garzon, M, Bozhinoski, D, Rossi, C.2021. Functional self-awareness and metacontrol for underwater robot autonomy. Sensors21(4): 1210. DOI: http://dx.doi.org/10.3390/s21041210 3. Aguzzi, J, Albiez, J, Flögel, S, Rune Godø, O, Grimsbø, E, Marini, S, Pfannkuche, O, Rodriguez, E, Thomsen, L, Torkelsen, T, Valencia, J, López-Vázquez, V, Wehde, H, Zhang, G.2020a. A flexible autonomous robotic observatory infrastructure for bentho-pelagic monitoring. Sensors20(6): 1614. DOI: http://dx.doi.org/10.3390/s20061614. 4. Aguzzi, J, Chatzievangelou, D, Marini, S, Fanelli, E, Danovaro, R, Flögel, S, Lebris, N, Juanes, F, De Leo, FC, Del Rio, J, Thomsen, L, Costa, C, Riccobene, G, Tamburini, C, Lefevre, D, Gojak, C, Poulain, PM, Favali, P, Griffa, A, Purser, A, Cline, D, Edigington, D, Navarro, J, Stefanni, S, D’Hondt, S, Priede, IG, Rountree, R, Company, JB.2019. New high-tech interactive and flexible networks for the future monitoring of deep-sea ecosystems. Environmental Science & Technology53(12): 6616–6631. DOI: http://dx.doi.org/10.1021/acs.est.9b00409. 5. Aguzzi, J, Costa, C, Calisti, M, Funari, V, Stefanni, S, Danovaro, R, Gomes, HI, Vecchi, F, Dartnell, LR, Weiss, P, Nowak, K, Chatzevangelou, D, Marini, S.2021. Research trends and future perspectives in marine biomimicking robotics. Sensors21(11): 3778. DOI: http://dx.doi.org/10.3390/s21113778.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|