Developing technological synergies between deep-sea and space research

Author:

Aguzzi Jacopo12,Flögel Sascha3,Marini Simone24,Thomsen Laurenz5,Albiez Jan6,Weiss Peter7,Picardi Giacomo89,Calisti Marcello10,Stefanni Sergio2,Mirimin Luca11,Vecchi Fabrizio2,Laschi Cecilia12,Branch Andrew13,Clark Evan B.13,Foing Bernard14,Wedler Armin15,Chatzievangelou Damianos1,Tangherlini Michael2,Purser Autun16,Dartnell Lewis17,Danovaro Roberto218

Affiliation:

1. Functioning and Vulnerability of Marine Ecosystems Group, Department of Renewable Marine Resources, Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, Spain

2. Stazione Zoologica Anton Dohrn (SZN), Naples, Italy

3. GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

4. National Research Council of Italy (CNR), Institute of Marine Sciences, La Spezia, Italy

5. OceanLab, Department of Physics and Earth Sciences, Jacobs University, Bremen, Germany

6. Kraken Robotics, Bremen, Germany

7. Spartan Space, Marseille, France

8. The BioRobotics Institute—Scuola Superiore Sant’Anna (SSAA), Pisa, Italy

9. Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy

10. Lincoln Institute for Agri-food Technology, University of Lincoln, Lincoln, UK

11. Galway Mayo Institute of Technology (GMIT), Galway, Ireland

12. Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore

13. Jet Propulsion Laboratory (JPL), California Institute of Technology (CalTech), Pasadena, CS, USA

14. ILEWG EuroMoonMars, Leiden University & VU Amsterdam, Leiden/Amsterdam, the Netherlands

15. Institut für Robotik und Mechatronik, Deutsches Zentrum für Luft- und Raumfahrt, Weßling, Germany

16. Alfred Wegener Institute (AWI) for Polar and Marine Research, Bremenhaven, Germany

17. School of Life Sciences, University of Westminster; London, United Kingdom

18. Department of Life and Environmental Science, Polytechnic University of Marche, Ancona, Italy

Abstract

Recent advances in robotic design, autonomy and sensor integration create solutions for the exploration of deep-sea environments, transferable to the oceans of icy moons. Marine platforms do not yet have the mission autonomy capacity of their space counterparts (e.g., the state of the art Mars Perseverance rover mission), although different levels of autonomous navigation and mapping, as well as sampling, are an extant capability. In this setting their increasingly biomimicked designs may allow access to complex environmental scenarios, with novel, highly-integrated life-detecting, oceanographic and geochemical sensor packages. Here, we lay an outlook for the upcoming advances in deep-sea robotics through synergies with space technologies within three major research areas: biomimetic structure and propulsion (including power storage and generation), artificial intelligence and cooperative networks, and life-detecting instrument design. New morphological and material designs, with miniaturized and more diffuse sensor packages, will advance robotic sensing systems. Artificial intelligence algorithms controlling navigation and communications will allow the further development of the behavioral biomimicking by cooperating networks. Solutions will have to be tested within infrastructural networks of cabled observatories, neutrino telescopes, and off-shore industry sites with agendas and modalities that are beyond the scope of our work, but could draw inspiration on the proposed examples for the operational combination of fixed and mobile platforms.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Reference143 articles.

1. Agostini, M, Böhmer, M, Bosma, J, Clark, K, Danninger, M, Fruck, C, Gernhäuser, R, Gärtner, A, Grant, D, Henningsen, F, Holzapfel, K, Huber, M, Jenkyns, R, Krauss, CB, Krings, K, Kopper, K, Leismüller, K, Leys, S, Macoun, P, Meighen-Berger, S, Michel, J, Moore, R, Morley, M, Padovani, P, Papp, L, Pirenne, P, Qiu, C, Carmen Rea, I, Resconi, E, Round, A, Ruskey, A, Spannfellner, C, Traxler, M, Turcati, A, Yanez, JP.2020. The Pacific Ocean neutrino experiment. Nature Astronomy4: 913–915. DOI: http://dx.doi.org/10.1038/s41550-020-1182-4.

2. Aguado, E, Milosevic, Z, Hernández, C, Sanz, R, Garzon, M, Bozhinoski, D, Rossi, C.2021. Functional self-awareness and metacontrol for underwater robot autonomy. Sensors21(4): 1210. DOI: http://dx.doi.org/10.3390/s21041210

3. Aguzzi, J, Albiez, J, Flögel, S, Rune Godø, O, Grimsbø, E, Marini, S, Pfannkuche, O, Rodriguez, E, Thomsen, L, Torkelsen, T, Valencia, J, López-Vázquez, V, Wehde, H, Zhang, G.2020a. A flexible autonomous robotic observatory infrastructure for bentho-pelagic monitoring. Sensors20(6): 1614. DOI: http://dx.doi.org/10.3390/s20061614.

4. Aguzzi, J, Chatzievangelou, D, Marini, S, Fanelli, E, Danovaro, R, Flögel, S, Lebris, N, Juanes, F, De Leo, FC, Del Rio, J, Thomsen, L, Costa, C, Riccobene, G, Tamburini, C, Lefevre, D, Gojak, C, Poulain, PM, Favali, P, Griffa, A, Purser, A, Cline, D, Edigington, D, Navarro, J, Stefanni, S, D’Hondt, S, Priede, IG, Rountree, R, Company, JB.2019. New high-tech interactive and flexible networks for the future monitoring of deep-sea ecosystems. Environmental Science & Technology53(12): 6616–6631. DOI: http://dx.doi.org/10.1021/acs.est.9b00409.

5. Aguzzi, J, Costa, C, Calisti, M, Funari, V, Stefanni, S, Danovaro, R, Gomes, HI, Vecchi, F, Dartnell, LR, Weiss, P, Nowak, K, Chatzevangelou, D, Marini, S.2021. Research trends and future perspectives in marine biomimicking robotics. Sensors21(11): 3778. DOI: http://dx.doi.org/10.3390/s21113778.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3