Connectivity corridor conservation: A conceptual model for the restoration of a changing Gulf of Mexico ecosystem

Author:

Peterson Charles H.1,Franklin Kelly P.2,Cordes Erik E.2

Affiliation:

1. Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA

2. Department of Biology, Temple University, Philadelphia, Pennsylvania, USA

Abstract

The ability of the ocean to continue to sustain human society depends on adequate protections of its ecosystem function and services. Despite the establishment of marine protected areas, formal protection of critical connectivity corridors to link habitats and thereby maintain necessary demographic transitions in marine species under threat is now rare. Such protections are critical to future resilience of food webs as climate and ocean change continues. Here, we focus on the Gulf of Mexico to support an integrative, holistic approach to marine and coastal habitat restoration, rehabilitation, and conservation in an ecosystem context following the extensive environmental and living resource injuries from the Deepwater Horizon oil well blowout. Critically important physical, chemical, and biological connectivity processes drive nutrient transport from the nearshore, mid-waters, and even deep ocean into coastal terrestrial habitats, enhancing primary production and terrestrial species populations. The emerging scientific understanding of the nature, habitat specificity, locations, and directions of transport in connectivity processes can help build natural ecosystem capital through protecting flows from land to sea and from the sea to multiple coastal habitats. We expose a dire need for a new conservation imperative, recognizing that oceanic and coastal protected areas established around the reliance of individual species on critical habitats are insufficient without also conserving relevant connectivity corridors that service ontogenetic migration pathways and ecosystem-support processes. Such connectivity must be explicitly understood, protected, and often actively enhanced through restoration intervention to ensure the success of various site-specific conservation actions and be continually modified in anticipation of and in response to multiple impacts of changing climate.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Reference92 articles.

1. Microbial sulfate reduction rates and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico;Geochimica Cosmochimica Acta,2000

2. Radiometric dating of submarine hydrocarbon seeps in the Gulf of Mexico;Geol Soc Am Bull,1997

3. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast;PLoS One,2015

4. Climate change and ocean deoxygenation within intensified surface-driven upwelling circulations;Philos Trans A Math Phys Eng Sci,2017

5. Rapid export of organic matter to the Mississippi Canyon;EOS,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3