Biological modification of mechanical properties of the sea surface microlayer, influencing waves, ripples, foam and air-sea fluxes

Author:

Jenkinson Ian R.12ORCID,Seuront Laurent3,Ding Haibing4,Elias Florence56

Affiliation:

1. Institute of Oceanology Chinese Academy of Sciences, Qingdao, People’s Republic, CN

2. Agence de Conseil et de Recherche Océanographiques, La Roche Canillac, FR

3. Centre National de la Recherche Scientifique, UMR 8187, Laboratoire d’Océanologie et de Géoscience, Wimereux, FR

4. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, People’s Republic, CN

5. Laboratoire Matière et Systèmes Complexes (MSC) – Université Paris Diderot, CNRS UMR 7057, Paris, FR

6. Sorbonne Universités, UPMC Université 6, UFR 925, Paris, FR

Abstract

Gas exchange reduction (GER) at the air-sea interface is positively related to the concentration of organic matter (OM) in the top centimetre of the ocean, as well as to phytoplankton abundance and primary production. The mechanisms relating OM to GER remain unclear, but may involve mechanical (rheological) damping of turbulence in the water immediately below the surface microlayer, damping of ripples and blocking of molecular diffusion by layers of OM, as well as electrical effects. To help guide future research in GER, particularly of CO2, we review published rheological properties of ocean water and cultures of phytoplankton and bacteria in both 3D and 2D deformation geometries, in water from both the surface layer and underlying water. Production of foam modulates air-sea exchange of many properties and substances, perhaps including climate-changing gases such as CO2. We thus also review biological modulation of production and decay of whitecaps and other sea foam. In the ocean literature on biological production of OM, particularly that which associates with the sea surface, the terms “surfactant” and “surface-active” have been given a variety of meanings that are sometimes vague, and may confuse. We therefore propose a more restricted definition of these terms in line with usage in surface science and organic chemistry. Finally, possible changes in OM-modulated GER are presented in relation to predicted global environmental changes.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3