Legacies of stream channel modification revealed using General Land Office surveys,with implications for water temperature and aquatic life

Author:

White Seth M.1,Justice Casey1,Kelsey Denise A.1,McCullough Dale A.1,Smith Tyanna2

Affiliation:

1. Department of Fishery Science, Columbia River Inter-Tribal Fish Commission,Portland, Oregon, US

2. School of the Environment, Portland State University, Portland, Oregon, US

Abstract

Land use legacies can have a discernible influence in present-day watersheds and should be accounted for when designing conservation strategies for riverine aquatic life. We describe the environmental history of three watersheds within the Grande Ronde subbasin of the Columbia River using General Land Office survey field notes from the 19th century. In the two watersheds severely impacted by Euro-American land use, stream channel widths—a metric representing habitat simplification—increased from an average historical width of 16.8 m to an average present width of 20.8 m in large streams; 4.3 m to 5.5 m in small, confined or partly confined streams; and 3.5 m to 6.5 m in small, laterally unconfined steams. Conversely, we did not detect significant change in stream widths in an adjacent, wilderness stream with minimal human impact. Using a mechanistic water temperature model and restoration scenarios based on the historical condition, we predicted that stream restoration in the impacted watersheds could notably decrease average water temperatures—especially when channel narrowing is coupled with riparian restoration—up to a 6.6°C reduction in the upper Grande Ronde River and 3.0°C in Catherine Creek. These reductions in water temperature translated to substantial changes in the percentage of stream network habitable to salmon and steelhead migration (from 29% in the present condition to 79% in the fully restored scenario) and to core juvenile rearing (from 13% in the present condition to 36% in the fully restored scenario). We conclude that land use legacies leave an important footprint on the present landscape and are critical for understanding historic habitat-forming processes as a necessary first step towards restoration.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3