Hydrological controls on the tropospheric ozone greenhouse gas effect

Author:

Kuai Le1,Bowman Kevin W.2,Worden Helen M.3,Herman Robert L.2,Kulawik Susan S.45

Affiliation:

1. Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, California, US

2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, US

3. National Center for Atmospheric Research, Boulder, Colorado, US

4. Bay Area Environmental Research Institute, Mountain View, California, US

5. NASA’s Ames Research Center, Mountain View, California, US

Abstract

The influence of the hydrological cycle in the greenhouse gas (GHG) effect of tropospheric ozone (O3) is quantified in terms of the O3 longwave radiative effect (LWRE), which is defined as the net reduction of top-of-atmosphere flux due to total tropospheric O3 absorption. The O3 LWRE derived from the infrared spectral measurements by Aura’s Tropospheric Emission Spectrometer (TES) show that the spatiotemporal variation of LWRE is relevant to relative humidity, surface temperature, and tropospheric O3 column. The zonally averaged subtropical LWRE is ~0.2 W m–2 higher than the zonally averaged tropical LWRE, generally due to lower water vapor concentrations and less cloud coverage at the downward branch of the Hadley cell in the subtropics. The largest values of O3 LWRE over the Middle East (>1 W/m2) are further due to large thermal contrasts and tropospheric ozone enhancements from atmospheric circulation and pollution. Conversely, the low O3 LWRE over the Inter-Tropical Convergence Zone (on average 0.4 W m–2) is due to strong water vapor absorption and cloudiness, both of which reduce the tropospheric O3 absorption in the longwave radiation. These results show that changes in the hydrological cycle due to climate change could affect the magnitude and distribution of ozone radiative forcing.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3