Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean

Author:

Ardyna Mathieu12ORCID,Mundy C. J.3,Mills Matthew M.1,Oziel Laurent245,Grondin Pierre-Luc45,Lacour Léo45,Verin Gauthier45,van Dijken Gert1,Ras Joséphine2,Alou-Font Eva6,Babin Marcel45,Gosselin Michel7,Tremblay Jean-Éric45,Raimbault Patrick8,Assmy Philipp9,Nicolaus Marcel10,Claustre Hervé2,Arrigo Kevin R.1

Affiliation:

1. Department of Earth System Science, Stanford University, Stanford, CA, US

2. Sorbonne Université, CNRS, Laboratoire d’Océanographie de Villefranche, LOV, Villefranche-sur-Mer, FR

3. Centre for Earth Observation Science (CEOS), University of Manitoba, Winnipeg, Manitoba, CA

4. Takuvik Joint International Laboratory, Laval University (Canada) – CNRS, FR

5. Département de biologie et Québec-Océan, Université Laval, Québec, Québec, CA

6. Balearic Islands Coastal Observing and Forecasting System (SOCIB), Palma de Mallorca, ES

7. Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, CA

8. Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), CNRS/INSU, IRD, Marseille, FR

9. Norwegian Polar Institute, Fram Centre, Tromsø, NO

10. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, DE

Abstract

The decline of sea-ice thickness, area, and volume due to the transition from multi-year to first-year sea ice has improved the under-ice light environment for pelagic Arctic ecosystems. One unexpected and direct consequence of this transition, the proliferation of under-ice phytoplankton blooms (UIBs), challenges the paradigm that waters beneath the ice pack harbor little planktonic life. Little is known about the diversity and spatial distribution of UIBs in the Arctic Ocean, or the environmental drivers behind their timing, magnitude, and taxonomic composition. Here, we compiled a unique and comprehensive dataset from seven major research projects in the Arctic Ocean (11 expeditions, covering the spring sea-ice-covered period to summer ice-free conditions) to identify the environmental drivers responsible for initiating and shaping the magnitude and assemblage structure of UIBs. The temporal dynamics behind UIB formation are related to the ways that snow and sea-ice conditions impact the under-ice light field. In particular, the onset of snowmelt significantly increased under-ice light availability (>0.1–0.2 mol photons m–2 d–1), marking the concomitant termination of the sea-ice algal bloom and initiation of UIBs. At the pan-Arctic scale, bloom magnitude (expressed as maximum chlorophyll a concentration) was predicted best by winter water Si(OH)4 and PO43– concentrations, as well as Si(OH)4:NO3– and PO43–:NO3– drawdown ratios, but not NO3– concentration. Two main phytoplankton assemblages dominated UIBs (diatoms or Phaeocystis), driven primarily by the winter nitrate:silicate (NO3–:Si(OH)4) ratio and the under-ice light climate. Phaeocystis co-dominated in low Si(OH)4 (i.e., NO3:Si(OH)4 molar ratios >1) waters, while diatoms contributed the bulk of UIB biomass when Si(OH)4 was high (i.e., NO3:Si(OH)4 molar ratios <1). The implications of such differences in UIB composition could have important ramifications for Arctic biogeochemical cycles, and ultimately impact carbon flow to higher trophic levels and the deep ocean.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3