Enzyme-treated microalgal co-product diets for rainbow trout aquaculture: Supporting fish growth, phosphorus digestibility, and reducing phosphorus waste emission

Author:

Andrade Sofie12,Sarker Pallab K.12ORCID,Kapuscinski Anne R.1,Fitzgerald Devin1,Greenwood Connor3,Nocera Pablo1,O’Shelski Kira1,Lee Benjamin1,Mkulama Abel1,Gwynne Duncan1,Orcajo Diego Gonzalez1,Schoffstall Benjamin1,Sarker Uchasha4,Warkaw Lydia1

Affiliation:

1. 1Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, USA

2. †Contributed equally

3. 2Monterey Bay Salmon and Trout Project, Davenport, CA, USA

4. 3Santa Cruz High School, Santa Cruz, CA, USA

Abstract

Aquaculture is one of the fastest-growing food sectors, producing almost 50% of fish for human consumption worldwide. However, relying on fish meal and oil for aquaculture diets is not sustainable economically or environmentally. Aquaculture feeds also contain terrestrial plant ingredients with indigestible forms of phosphorus (P), of which 70%–80% can be released into aquatic environments. This P influx contributes to eutrophication of freshwater ecosystems that can lead to anoxic conditions. This study explores a more sustainable diet for salmonids, an important and valuable seafood. Our aim was to test ingredients with highly digestible forms of P in nutritionally balanced portions to support fish growth and reduce P loading. We determined the digestibility of three feeds containing raw, extruded, and enzymatically processed microalgal co-product of Nannochloropsis oculata compared to a conventional diet. We also quantified how much P was retained and excreted. We detected highest growth in trout fed enzymatically processed co-product feed, though it was not statistically different (p = 0.846) from growth of fish fed the reference or other co-product diets. The enzyme-treated, microalgal co-product ingredient and diet had comparable values for P digestibility and solid P excretion to the reference diet, but the lowest average solid P excretion of all test diets. Trout fed the enzyme-treated diet had the highest P retention, while the reference diet had the lowest (p = 0.0429). Trout fed the enzyme-treated diet had the lowest (p = 0.0174) and negative dissolved P excretion, while those fed the reference diet had the highest. Results showed that enzyme-treated N. oculata co-product maintains digestibility, increases P retention, and reduces dissolved P excretion compared to the reference diet in rainbow trout. These findings encourage follow-up research to design and test growth performance of diets containing enzyme-treated microalgal co-product as sustainable trout aquafeed.

Publisher

University of California Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3