High-resolution records of anthropogenic activity and geohazards from the reservoir of Sun Moon Lake, Central Taiwan

Author:

Chen Huei-Fen12,Wei Kuo-Yen3,Huang Jyh-Jaan Steven34,Lin Chi-Cheng1,Su Chih-Chieh5,Song Gwo-Shyh5,Li Hong-Chun3,Lee Teh-Quei6,Song Shen-Rong3,Pan Hui-Juan1

Affiliation:

1. Institute of Earth Sciences, National Taiwan Ocean University, Keelung, Taiwan, Republic of China

2. Center of Excellence for Oceans, National Taiwan Ocean University, Keelung, Taiwan, Republic of China

3. Department of Geosciences, National Taiwan University, Taipei, Taiwan, Republic of China

4. Institute of Geology, University of Innsbruck, Innsbruck, Austria

5. Institute of Oceanography, National Taiwan University, Taipei, Taiwan, Republic of China

6. Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan, Republic of China

Abstract

Sun Moon Lake is the first dam reservoir constructed in Taiwan with the capability of generating hydroelectricity satisfying the whole Taiwan need during the Japanese colonial period since 1934 CE. Now, the Sun Moon Lake is one of the biggest hydropower stations in Taiwan and has become an important touring area. During World War II (1944–1945 CE), the hydroelectric power plant at Sun Moon Lake was bombed by the U.S. air force, which caused severe damage to the dam structure. More recently, the dam structure was also damaged during the 1999 CE Chi-Chi earthquake whose epicenter is nearby in the Nantou County. A suite of cores were taken from both Sun Lake and Moon Lake, and two selected cores, Sun 2–1 and SM 16 4–3, from Sun Lake were detailed studied with multiple analyses, including X-ray imaging, magnetic susceptibility, visible spectrophotometry, X-ray fluorescence (XRF) scanning, and mineral analysis. We discovered that the increase of Ca content in the sediments not only clearly indicates when the dam was constructed at Sun Moon Lake but also records evidence of structure repairs after both the World War II bombing and the Chi-Chi earthquake. Additionally, the yellow turbidite, X-ray image, and low-Ca signals in Core Sun 2–1 strongly correlate to the typhoon events that caused severe floods in the watershed of Zhuoshui River. The turbidite layers caused by the 1963 Gloria Typhoon are also characterized by conspicuous high peak of Fe/Mn in both cores. This study shows that XRF scanning results are useful for recognition of human activity and for high precipitation event correlation. Moreover, the appearance of charcoal layers shows evidence of forest burning and slash-and-burn activities by humans during the past 4,000 years back to the Middle Neolithic Age.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3