Antibiotic resistance in bacterial communities of the oyster Crassostrea rivularis from different salinity zones in Qinzhou Bay, Beibu Gulf, China

Author:

Wang Ruixuan1,Li Bing2,Zhang Li3,Hou Yuee4,Lin Huajian5,Luo Bang3,Yu Gang2,Wang Jiangyong2,Zhu Hui1

Affiliation:

1. School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China

2. South China Sea Fisheries Research Institute, Guangzhou, China

3. Guangxi Zhuang Autonomous Region Academy of Fishery Sciences, China

4. Zhuhai Kerric Testing Co., Ltd., Zhuhai, China

5. Guangdong Provincial Aquatic Animal Epidemic Disease Prevention and Control Center, Guangzhou, China

Abstract

The oyster is one of the most abundantly harvested shellfish in the world. To explore the impact of salinity on antibiotic-resistant bacteria (ARB) and the microbial community associated with farmed oysters, oysters were taken from high-, medium-, and low-salinity zones (labeled HS, MS, and LS, respectively) in Qinzhou Bay of Beibu Gulf, China. ARB were tested with the Kirby–Bauer method. Species of ARB were confirmed by 16 S rDNA analysis. Microbial communities were analyzed by high-throughput sequencing technology. The results indicate that HS-derived ARB (>60%) resisted β-lactams and aminoglycosides and that LS-derived strains resisted macrolide and tetracyclines. All strains resisted 4 or more antibiotics. A total of 542 operational taxonomic units were detected in the samples, with Shewanella, Vibrio, and Endozoicomonas being the dominant genera (>80%), although distributed differently among the different salinity samples. The oyster microbial richness ranked as MS > LS > HS. This study provides an important reference for future efforts to explain factors or mechanisms underlying correlations between ARB, the microbiome, and salinity and thus the potential health of oysters in this region.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3