Influence of anthropogenic nutrient inputs on rates of coastal ocean nitrogen and carbon cycling in the Southern California Bight, United States

Author:

McLaughlin Karen1,Howard Meredith D. A.12,Robertson George3,Beck Carly D. A.14,Ho Minna1,Kessouri Fayçal1,Nezlin Nikolay P.15,Sutula Martha1,Weisberg Stephen B.1

Affiliation:

1. Southern California Coastal Water Research Project, Costa Mesa, CA, USA

2. Present affiliation: Central Valley Regional Water Quality Control Board, Rancho Cordova, CA, USA

3. Orange County Sanitation District, Fountain Valley, CA, USA

4. Present affiliation: California Department of Fish and Wildlife, Ontario, CA, USA

5. Present affiliation: Global Science & Technology, Inc., Greenbelt, MD, USA

Abstract

Coastal nitrogen enrichment is a global environmental problem that can influence acidification, deoxygenation, and subsequent habitat loss in ways that can be synergistic with global climate change impacts. In the Southern California Bight, an eastern boundary upwelling system, modeling of wastewater discharged through ocean outfalls has shown that it effectively doubles nitrogen loading to urban coastal waters. However, effects of wastewater outfalls on rates of primary production and respiration, key processes through which coastal acidification and deoxygenation are manifested, have not been directly linked to observed trends in ambient chlorophyll a, oxygen, or pH. Here, we follow a “reference-area” approach and compare nutrient concentrations and rates of nitrification, primary production, and respiration observed in areas within treated wastewater effluent plumes to areas spatially distant from ocean outfalls where we expected minimal plume influence. We document that wastewater nutrient inputs had an immediate, local effect on nutrient stoichiometry, elevating ammonium and nitrite concentrations by 4 µM and 0.2 µM (on average), respectively, and increasing dissolved nitrogen-to-phosphorus ratios 7-fold within the plume. Chlorophyll a increased slightly by 1 µg L–1 in the upper 60 m of the water column (on average), and δ13C and δ15 N of suspended particulate matter, an integrated measure of primary production, increased by 1.3% and 1%, respectively (on average). Nitrification rates within the plume increased by 17 nmol L–1 day–1 (on average). We did not observe a significant near-plume effect on δ18O and δ15 N of dissolved nitrate + nitrite, an indicator of nitrogen assimilation into biomass, on rates of primary production and respiration or on dissolved oxygen concentration, suggesting that any potential impact from wastewater on these key features is moderated by other factors, notably water mass mixing. These results indicate that a “reference-area” approach may be insufficient to document regional-scale impacts of nutrients.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Reference100 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3