Multi-scale observations of the co-evolution of sea ice thermophysical properties and microwave brightness temperatures during the summer melt period in Hudson Bay

Author:

Harasyn Madison L.1ORCID,Isleifson Dustin12,Chan Wayne1,Barber David G.1

Affiliation:

1. Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, CA

2. Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Manitoba, CA

Abstract

Monitoring the trend of sea ice breakup and formation in Hudson Bay is vital for maritime operations, such as local hunting or shipping, particularly in response to the lengthening of the ice-free period in the Bay driven by climate change. Satellite passive microwave sea ice concentration products are commonly used for large-scale sea ice monitoring and predictive modelling; however, these product algorithms are known to underperform during the summer melt period due to the changes in sea ice thermophysical properties. This study investigates the evolution of in situ and satellite-retrieved brightness temperature (TB) throughout the melt season using a combination of in situ passive microwave measurements, thermophysical sampling, unmanned aerial vehicle (UAV) surveys, and satellite-retrieved TB. In situ data revealed a strong positive correlation between the presence of liquid water in the snow matrix and in situ TB in the 37 and 89 GHz frequencies. When considering TB ratios utilized by popular sea ice concentration algorithms (e.g., NASA Team 2), liquid water presence in the snow matrix was shown to increase the in situ TB gradient ratio of 37/19V. In situ gradient ratios of 89/19V and 89/19H were shown to correlate positively with UAV-derived melt pond coverage across the ice surface. Multi-scale comparison between in situ TB measurements and satellite-retrieved TB (by Advanced Microwave Scanning Radiometer 2) showed a distinct pattern of passive microwave TB signature at different stages of melt, confirmed by data from in situ thermophysical measurements. This pattern allowed for both in situ and satellite-retrieved TB to be partitioned into three discrete stages of sea ice melt: late spring, early melt and advanced melt. The results of this study thus advance the goal of achieving more accurate modeled predictions of the sea ice cover during the critical navigation and breakup period in Hudson Bay.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3