Affiliation:
1. Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, Colorado, US
Abstract
In 2016, the Denver Metro Area (DMA)/Northern Colorado Front Range (NCFR) was reclassified from a Marginal to a Moderate O3 Non-Attainment Area due to the prevalence of high summer ozone (O3) occurrences. Hourly surface O3 data collected during 2000–2015 from a total of 80 monitoring sites in the State of Colorado were investigated for geographical features in O3 behavior and O3 changes over time. We particularly focus on summer O3 (June, July, August), which is the time when most exceedances of the O3 National Ambient Air Quality Standard (NAAQS) have been recorded. Variables investigated include the statistical (5th, 50th (median), and 95th percentile) distribution of O3 mixing ratios, diurnal amplitudes, and their trends. Trend analyses were conducted for 20 site records that had at least ten years of data. The majority of Colorado ozone monitoring sites show an increase of the 5th (16 total; 11 of these are statistically significant (p-value ≤ 0.05) trends) and 50th (15 total; 4 statistically significant trends) percentile values. Changes for the 95th percentile values were smaller and less consistent. One site showed a statistically significant declining trend, and one site an increasing trend; the majority of other sites had slightly negative, albeit not statistically significant declining O3. Ozone changes at the two highest elevations sites (>2500 m asl) are all negative, contrasting increasing O3 at U.S. West Coast sites. NCFR urban sites do not show the rate of decreasing higher percentile O3 as seen for the majority of urban areas across the U.S. during the past 1–2 decades. The amplitudes of diurnal O3 cycles were studied as a proxy for nitrogen oxides (NOx) emissions and the diurnal O3 production chemistry. The majority of sites show a decrease in the median summer O3 diurnal amplitude (19 total/10 statistically significant). This is mostly driven by the increase in nighttime O3 minima, which is most likely a sign for a declining rate of nighttime O3 loss from titration with nitric oxide (NO), indicating a change in O3 behavior from declining NOx emissions. Since median and upper percentile surface O3 values in the DMA have not declined at the rates seen in other western U.S. regions, thus far the reduction in NOx has had a more pronounced effect on the lower percentile O3 distribution than on high O3 occurrences that primarily determine air quality. An assessment of the influence of oil and gas emissions on Colorado, and in particular DMA O3, is hampered by the sparsity of monitoring within oil and gas basins. Continuous, long-term, high quality, and co-located O3, NOx, and VOC monitoring are recommended for elucidating the geographical heterogeneity of O3 precursors, their changing emissions, and for evaluation of the effectiveness of O3 air quality regulations.
Publisher
University of California Press
Subject
Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography
Reference56 articles.
1. Summer ozone in the northern Front Range metropolitan area: Weekend-weekday effects, temperature dependences, and the impact of drought;Atmospheric Chemistry and Physics,2017
2. Interannual variability in baseline ozone and its relationship to surface ozone in the western US;Environmental Science & Technology,2016
3. A decade of on-road emissions measurements;Environmental Science & Technology,2008
4. Seasonal ozone behavior along an elevation gradient in the Colorado Front Range Mountains;Atmospheric Environment,2010
5. CDPHE. 2008a. Denver Metro Area & North Front Range Ozone Action Plan, 1–76. https://www.colorado.gov/pacific/sites/default/files/AP_PO_Denver-Ozone-Action-Plan-2008.pdf December 12, 2008 (accessed January 2018).
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献