Plume dispersion from the Nelson and Hayes rivers into Hudson Bay using satellite remote sensing of CDOM and suspended sediment

Author:

Basu Atreya1,McCullough Greg1,Bélanger Simon2,Mukhopadhyay Anirban13,Doxaran David4,Sydor Kevin5,Barber David1,Ehn Jens1

Affiliation:

1. 1Centre for Earth Observation Science, Clayton H. Riddell Faculty of Environment, Earth and Resources, University of Manitoba, Winnipeg, MB, Canada

2. 2Département de Biologie, Chimie et Géographie, groupes BORÉAS and Québec-Océan, Université du Québec à Rimouski, Rimouski, QC, Canada

3. 3Disaster Preparedness, Mitigation, and Management (DPMM), Asian Institute of Technology, Khlong Luang, Pathumthani, Thailand

4. 4Laboratoire d’Océanographie de Villefranche, UMR7093, CNRS/Sorbonne Université, Villefranche-sur-Mer, France

5. 5Manitoba Hydro, Winnipeg, MB, Canada

Abstract

Change in the dispersion pattern of Arctic river plumes due to climate change and hydroelectric regulation is challenging to monitor, calling for synoptic and continuous observation using satellite remote sensing. Algorithms for colored dissolved organic matter (CDOM) and total suspended solids (TSS) were applied to moderate resolution imaging spectroradiometer (MODIS) imagery to study Nelson and Hayes river plume dispersion into southwestern Hudson Bay, employing quantile regressions to capture dispersion variability along a freshwater–marine gradient. MODIS-derived CDOM and TSS quantile concentrations (Q0.05–Q0.95) decreased exponentially with distance from the Nelson River mouth. The Q0.95 asymptote marked the offshore extent of the river plume and was used to determine the marine and river water fractions of surface water in southwestern Hudson Bay. At about 125 km from the Nelson River mouth, CDOM was reduced by 75% of its river mouth values. Owing to the significant co-variability between CDOM dilution and river discharge, a 0.25 river water fraction was estimated at this distance, which varied by ±35 km during flood and ebb flows. Anti-cyclonic winds transported the river plume along the 54° azimuth towards central Hudson Bay, while cyclonic winds propagated the plume eastward along the south shore. Particle settling in the coastal waters and resuspension events from mudflats and/or bank erosion caused non-significant relationships between TSS and river discharge. This non-conservative behavior renders TSS a less useful optical tracer of Nelson and Hayes river water in southwestern Hudson Bay. The novel quantile regression approach for defining boundaries of river water dilution in transitional waters may provide helpful information for coastal management on a spatial scale of tens to hundreds of kilometers, ranging from near real-time monitoring to seasonal and multi-year studies.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3