First results of the ARIEL L-band radiometer on the MOSAiC Arctic Expedition during the late summer and autumn period

Author:

Gabarró Carolina1,Fabregat Pau2,Hernández-Macià Ferran1,Jove Roger2,Salvador Joaquin1,Spreen Gunnar3,Thielke Linda3,Dadic Ruzica4,Huntemann Marcus3,Kolabutin Nikolai5,Nomura Daiki6,Hannula Henna-Reetta7,Schneebeli Martin8

Affiliation:

1. 1Barcelona Expert Center (BEC), Institute of Marine Science (ICM-CSIC), Barcelona, Spain

2. 2Balamis—Microwave Sensors and Electronics Ltd, Barcelona, Spain

3. 3Institute of Environmental Physics, University of Bremen, Bremen, Germany

4. 4Victoria University of Wellington, Wellington, New Zealand

5. 5Arctic and Antarctic Research Institute, St. Petersburg, Russia

6. 6Hokkaido University, Hakodate, Japan

7. 7Finnish Meteorological Institute, Helsinki, Finland

8. 8WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

Abstract

Arctic sea ice is changing rapidly. Its retreat significantly impacts Arctic heat fluxes, ocean currents, and ecology, warranting the continuous monitoring and tracking of changes to sea ice extent and thickness. L-band (1.4 GHz) microwave radiometry can measure sea ice thickness for thin ice ≤1 m, depending on salinity and temperature. The sensitivity to thin ice makes L-band measurements complementary to radar altimetry which can measure the thickness of thick ice with reasonable accuracy. During the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, we deployed the mobile ARIEL L-band radiometer on the sea ice floe next to research vessel Polarstern to study the sensitivity of the L-band to different sea ice parameters (e.g., snow and ice thickness, ice salinity, ice and snow temperature), with the aim to help improve/validate current microwave emission models. Our results show that ARIEL is sensitive to different types of surfaces (ice, leads, and melt ponds) and to ice thickness up to 70 cm when the salinity of the sea ice is low. The measurements can be reproduced with the Burke emission model when in situ snow and ice measurements for the autumn transects were used as model input. The correlation coefficient for modeled Burke brightness temperature (BT) versus ARIEL measurements was approximately 0.8. The discrepancy between the measurements and the model is about 5%, depending on the transects analyzed. No explicit dependence on snow depth was detected. We present a qualitative analysis for thin ice observations on leads. We have demonstrated that the ARIEL radiometer is an excellent field instrument for quantifying the sensitivity of L-band radiometry to ice and snow parameters, leading to insights that can enhance sea ice thickness retrievals from L-band radiometer satellites (such as Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP)) and improve estimates of Arctic sea-ice thickness changes on a larger scale.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3