Biogeochemical characterization of municipal compost to support urban agriculture and limit childhood lead exposure from resuspended urban soils

Author:

Fitzstevens Maia G.1,Sharp Rosalie M.2,Brabander Daniel J.3

Affiliation:

1. Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, US

2. Environmental Studies, Wellesley College, Wellesley, Massachusetts, US

3. Geosciences, Wellesley College, Wellesley, Massachusetts, US

Abstract

Chronic low-level lead exposure among low-income minority children is an urgent environmental justice issue. Addressing this ubiquitous urban public health crisis requires a new transdisciplinary paradigm. The primary goals of this work are to inform best practices for urban gardeners working in lead contaminated soils and to reimagine urban organic waste management schemes to produce compost, which when covering or mixed with urban soil, could minimize lead exposure. We investigate bulk and bioaccessible lead from five types of compost used in urban gardens in Boston, MA. We categorized them by feedstock and measured bulk elemental concentrations and physical characteristics. Our results show that different feedstocks exhibit unique geochemical fingerprints. While bulk lead concentrations in compost are a fraction of what is typical for urban soils, the bioaccessible lead fraction in compost is greater than the default parameters for the Integrated Exposure Uptake Biokinetic (IEUBK) model. The lack of geochemical differences across feedstocks for lead sorption to carbon indicates a similar sorption mechanism for all compost. This suggests that municipal compost would be suitable for capping lead contaminated urban soils. Risk assessment models should consider lead bioaccessibility, to prevent the underprediction of exposure risk, and should include compost along with soils as urban matrices. Based on the observed bioaccessibility in our compost samples, 170 mg/kg total lead in compost will yield the same bioaccessible lead as the IEUBK model predicts for the 400 mg/kg EPA soil lead benchmark. Local logistical challenges remain for interdisciplinary teams of city planners, exposure scientists, and urban agricultural communities to design organic waste collection practices to produce compost that will support urban agriculture and primary lead exposure prevention.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3