Microstructure and Biogeochemistry of the Organically Preserved Ediacaran Metazoan Sabellidites

Author:

Moczydłowska Małgorzata,Westall Frances,Foucher Frédéric

Abstract

Metazoans (multicellular animals) evolved during the Ediacaran Period as shown by the record of their imprints, carbonaceous compressions, trace fossils, and organic bodies and skeletal fossils. Initial evolutionary experiments produced unusual bodies that are poorly understood or conceived of as non-metazoan. It is accepted that sponges, ctenophorans, cnidarians, placozoans, and bilaterians were members of the Ediacaran fauna, many of which have uncertain affinities. The fossil Sabellidites cambriensis Yanishevsky, 1926, derived from the terminal Ediacaran strata, is the earliest known organically preserved animal that belonged to a newly evolving fauna, which replaced the Ediacara-type metazoans. Morphologically simple soft-bodied tubular fossils, such as S. cambriensis, and biomineralized, as contemporaneous Sinotubulites sp., are not easy to recognize phylogenetically because many unrelated organisms developed encasing tubes independently. Therefore, in addition to morphologic information, evidence derived from the microstructure of the organic wall and its biochemistry may be vital to resolving fossil origins and phylogenetic relationships. Here we present morphological, microstructural and biogeochemical studies on S. cambriensis using various microscopic and spectroscopic techniques, which provide new evidence that supports its siboglinid, annelidan affinity. The late Ediacaran age of Sabellidites fossil constrains the minimum age of siboglinids and the timing of the divergence of including them annelids by fossil record and this could be tested using molecular clock estimates. The fine microstructure of the organic tube in Sabellidites is multi-layered and has discrete layers composed of differently orientated and perfectly shaped fibers embedded in an amorphous matrix. The highly ordered and specific pattern of fiber alignment (i.e., the texture of organic matter) is similar to that of representatives of the family Siboglinidae. The biogeochemistry of the organic matter that comprised the tube, which was inferred from its properties, composition, and microstructure, is consistent with chitin and proteins as in siboglinids.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3