Ichnotaxobases for bioerosion trace fossils in bones

Author:

Pirrone Cecilia A.,Buatois Luis A.,Bromley Richard G.

Abstract

Bioerosion trace fossils in bones are defined as biogenic structures that cut or destroy hard bone tissue as the result of mechanical and/or chemical processes. Under the premise that their paleoecological potential can completely be realized only through correct taxonomic assignment, this work focuses on the methodology for naming these biogenic structures. Thus, we propose the following ichnotaxobases in order to assist in naming trace fossils in bones: general morphology, bioglyphs, filling, branching, pattern of occurrence, and site of emplacement. The most common general morphologies are: pits and holes (borings); chambers; trails; tubes; channels (canals); grooves; striae; and furrows. The main types of bioglyphs are grooves and scratches, which may display different arrangements, such as parallel and opposing, or arcuate paired. The nature of the fill may help recognition of the origin, composition, and relationship with the surrounding sediment, as well as processes of destruction or consumption of bony tissue. The structure and layout of the filling, such as meniscate backfill or pelleted filling, offer information about the bioeroding processes. Branching structures on cortical bone are present in canals and furrows. Where the trace penetrates spongy bone, branching structures are forming tunnels that may connect internal chambers. The common patterns of occurrence are individual, paired, grouped, overlapping, lined, and arcuate. The site of emplacement may be in cortical bone, spongy bone, articular surfaces, internal bone microstructures, and external bone anatomical structures. The use of substrate as an ichnotaxobase is problematic, but as biological substrate, bone itself is a valuable source of information for paleoecologic and ethologic inferences. Given the paleontological importance of bioerosion trace fossils in bones, we underscore interactions between ichnology and other sciences, such as forensic entomology, archaeology, paleoecology, and taphonomy.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology

Reference65 articles.

1. Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral?

2. Mammalian tooth marks on the bones of dinosaurs and other Late Cretaceous vertebrates

3. Ichnology of the Rhenodanubian Flysch (Lower Cretaceous–Eocene) in Austria and Germany;Uchman;Beringeria,1999

4. The Recent boring Gastrochaenolites ornatus Kelly and Bromley, 1984, in a Chalk cobble from Cromer, England;Donovan;Bulletin of the Mizunami Fossil Museum,2011

5. Paleobiology of the Crustacean Trace FossilSpongeliomorpha ibericain the Miocene of Southeastern Spain

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3