A computational analysis of locomotor anatomy and body mass evolution in Allosauroidea (Dinosauria: Theropoda)

Author:

Bates Karl T.,Benson Roger B. J.,Falkingham Peter L.

Abstract

We investigate whether musculoskeletal anatomy and three-dimensional (3-D) body proportions were modified during the evolution of large (>6000 kg) body size in Allosauroidea (Dinosauria: Theropoda). Three adaptations for maintaining locomotor performance at large body size, related to muscle leverage, mass, and body proportions, are tested and all are unsupported in this analysis. Predictions from 3-D musculoskeletal models of medium-sized (Allosaurus) and large-bodied (Acrocanthosaurus) allosauroids suggest that muscle leverage scaled close to isometry, well below the positive allometry required to compensate for declining muscle cross-sectional area with increasing body size. Regression analyses on a larger allosauroid data set finds slight positive allometry in the moment arms of major hip extensors, but isometry is included within confidence limits. Contrary to other recent studies of large-bodied theropod clades, we found no compelling evidence for significant positive allometry in muscle mass between exemplar medium- and large-bodied allosauroids. Indeed, despite the uncertainty in quantitative soft tissue reconstruction, we find strong evidence for negative allometry in the caudofemoralis longus muscle, the single largest hip extensor in non-avian theropods. Finally, we found significant inter-study variability in center-of-mass predictions for allosauroids, but overall observe that consistently proportioned soft tissue reconstructions produced similar predictions across the group, providing no support for a caudal shift in the center of mass in larger taxa that might otherwise reduce demands on hip extensor muscles during stance. Our data set provides further quantitative support to studies that argue for a significant decline in locomotor performance with increasing body size in non-avian theropods. However, although key pelvic limb synapomorphies of derived allosauroids (e.g., dorsomedially inclined femoral head) evolved at intermediate body sizes, they may nonetheless have improved mass support.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3