Differential drivers of benthic foraminiferal and molluscan community composition from a multivariate record of early Miocene environmental change

Author:

Belanger Christina L.,Garcia Marites Villarosa

Abstract

Climate changes are multivariate in nature, and disentangling the proximal drivers of biotic responses to paleoclimate events requires time series of multiple environmental proxies. We reconstruct a multivariate time series of local environmental change for the early Miocene Newport Member of the Astoria Formation (20.26–18 Ma), using proxies for temperature (δ18O), productivity (δ13C), organic carbon flux (Δδ13C), oxygenation (δ15N), and sedimentary grain size (% mud). Our data suggest increases in productivity and declines in oxygenation on the Oregon shelf during this interval of global warming. We evaluate the association of individual environmental factors, and combinations of factors, with changes in faunal composition observed in benthic foraminiferal and molluscan communities collected from the exact same sediments as the environmental data. The δ15N values are the most parsimonious correlates with major changes in foraminiferal composition, whereas molluscan composition is most closely related to δ13C values, suggesting that different components of the environment are influencing each group. When the proxies that have the best supported relationships with the faunal gradients are removed from the analyses to simulate the absence of those proxy data, significant relationships between the faunal gradients and the remaining environmental proxies can still be found. This suggests that environmental drivers can be incorrectly attributed to faunal changes when key proxy data are missing. Paleoecological studies of biotic response that test multiple environmental drivers for multiple taxonomic groups are powerful tools for identifying the ecological consequences of past warming events and the regional drivers of ecological changes.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3