The environmental structure of trilobite morphological disparity

Author:

Hopkins Melanie J.

Abstract

Despite the mounting evidence that taxonomic diversity dynamics are patterned environmentally and that taxonomic diversity and morphological disparity are decoupled both temporally and spatially in many clades, very little work has been done to assess whether disparity is also influenced by environment. Here I investigate whether trilobite disparity shows environmental patterning through time. I used the method developed by Simpson and Harnik (2009) for estimating latitudinal, substrate, and bathymetric affinities from fossil occurrence data, downloaded from the Paleobiology Database. This method has the advantages that the biological null hypothesis is explicitly separated from the expectation due to sampling, and that the posterior probability can be used to infer degree of preference for one habitat compared to another. To measure morphology, I used a data set of outlines of the trilobite cranidium from Foote (1993). Many of the species in this data set are not represented in the Paleobiology Database in sufficient numbers to assess species-level affinity for these taxa, but species-level affinity could be estimated with high fidelity by using genus-level affinities. Results show that cranidial morphological diversity was structured by environmental preferences of the taxa but the structure was complex and changed through time. In particular, there was little differentiation in morphospace around latitudinal, substrate, or bathymetric affinity during the Cambrian. In contrast, both diversification and expansion into previously unoccupied areas of morphospace during the Ordovician were dominated by tropical, deeper-water taxa.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3