Timing marine–freshwater transitions in the diatom order Thalassiosirales

Author:

Alverson Andrew J.

Abstract

With species found throughout both marine and fresh waters, the diatom order Thalassiosirales is one of the most phylogenetically and ecologically diverse lineages of planktonic diatoms. A clear understanding of the timescale of Thalassiosirales evolution would provide novel insights into the rates and patterns of species diversification associated with major habitat shifts, as well as provide valuable context for understanding the age and evolutionary history of the model species, Cyclotella nana (= Thalassiosira pseudonana). The freshwater fossil record for Thalassiosirales is extensive, well characterized, and generally supportive of a Miocene origin for the major freshwater lineages. The marine record is, by comparison, more sparse and in many cases, unverified. The discovery of freshwater thalassiosiroids in Eocene sediments pushed the freshwater fossil record considerably further back in time, highlighting an apparent gap of some 30 million years. An alternative interpretation is that the Miocene and Eocene reports represent competing hypotheses. In the absence of additional independent and decisive fossil data, I explored the relative plausibility of these two scenarios with Bayesian relaxed molecular clock methods under a range of fossil calibration schemes. Although I found no support for the Eocene fossil dates, the two major freshwater colonization events probably occurred much earlier than previously thought—as early as the Paleocene for Cyclotella, followed by an Eocene origin for the cyclostephanoid lineage. Much of the extant freshwater diversity in both lineages traces back to the Miocene, however, giving the impression of a single Miocene origin. Efforts to infer the timescale of Thalassiosirales evolution more accurately would benefit from a systematic reevaluation of the marine fossil record and formal integration of fossil species into existing phylogenetic hypotheses.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3