Seq2KG: An End-to-End Neural Model for Domain Agnostic Knowledge Graph (not Text Graph) Construction from Text

Author:

Stewart Michael1,Liu Wei1

Affiliation:

1. The University of Western Australia

Abstract

Knowledge Graph Construction (KGC) from text unlocks information held within unstructured text and is critical to a wide range of downstream applications. General approaches to KGC from text are heavily reliant on the existence of knowledge bases, yet most domains do not even have an external knowledge base readily available. In many situations this results in information loss as a wealth of key information is held within "non-entities". Domain-specific approaches to KGC typically adopt unsupervised pipelines, using carefully crafted linguistic and statistical patterns to extract co-occurred noun phrases as triples, essentially constructing text graphs rather than true knowledge graphs. In this research, for the first time, in the same flavour as Collobert et al.'s seminal work of "Natural language processing (almost) from scratch" in 2011, we propose a Seq2KG model attempting to achieve "Knowledge graph construction (almost) from scratch". An end-to-end Sequence to Knowledge Graph (Seq2KG) neural model jointly learns to generate triples and resolves entity types as a multi-label classification task through deep learning neural networks. In addition, a novel evaluation metric that takes both semantic and structural closeness into account is developed for measuring the performance of triple extraction. We show that our end-to-end Seq2KG model performs on par with a state of the art rule-based system which outperformed other neural models and won the first prize of the first Knowledge Graph Contest in 2019. A new annotation scheme and three high-quality manually annotated datasets are available to help promote this direction of research.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fine-Grained Entity-Type Completion Based on Neighborhood-Attention and Cartesian–Polar Coordinates Mapping;International Journal of Software Engineering and Knowledge Engineering;2024-06-19

2. Unifying context with labeled property graph: A pipeline-based system for comprehensive text representation in NLP;Expert Systems with Applications;2024-04

3. Coarse-to-fine Knowledge Graph Domain Adaptation based on Distantly-supervised Iterative Training;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

4. Automatic Construction of Educational Knowledge Graphs: A Word Embedding-Based Approach;Information;2023-09-27

5. An Improved Method for Constructing Domain-Agnostic Knowledge Graphs;Database Systems for Advanced Applications. DASFAA 2023 International Workshops;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3