LogAnomaly: Unsupervised Detection of Sequential and Quantitative Anomalies in Unstructured Logs

Author:

Meng Weibin12,Liu Ying12,Zhu Yichen3,Zhang Shenglin4,Pei Dan12,Liu Yuqing4,Chen Yihao12,Zhang Ruizhi5,Tao Shimin5,Sun Pei5,Zhou Rong5

Affiliation:

1. Tsinghua University

2. Beijing National Research Center for Information Science and Technology (BNRist)

3. University of Toronto

4. Nankai University

5. Huawei

Abstract

Recording runtime status via logs is common for almost every computer system, and detecting anomalies in logs is crucial for timely identifying malfunctions of systems. However, manually detecting anomalies for logs is time-consuming, error-prone, and infeasible. Existing automatic log anomaly detection approaches, using indexes rather than semantics of log templates, tend to cause false alarms. In this work, we propose LogAnomaly, a framework to model unstructured a log stream as a natural language sequence. Empowered by template2vec, a novel, simple yet effective method to extract the semantic information hidden in log templates, LogAnomaly can detect both sequential and quantitive log anomalies simultaneously, which were not done by any previous work. Moreover, LogAnomaly can avoid the false alarms caused by the newly appearing log templates between periodic model retrainings. Our evaluation on two public production log datasets show that LogAnomaly outperforms existing log-based anomaly detection methods.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 244 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3