Affiliation:
1. Tsinghua University
2. Beijing National Research Center for Information Science and Technology (BNRist)
3. University of Toronto
4. Nankai University
5. Huawei
Abstract
Recording runtime status via logs is common for almost every computer system, and detecting anomalies in logs is crucial for timely identifying malfunctions of systems. However, manually detecting anomalies for logs is time-consuming, error-prone, and infeasible. Existing automatic log anomaly detection approaches, using indexes rather than semantics of log templates, tend to cause false alarms. In this work, we propose LogAnomaly, a framework to model unstructured a log stream as a natural language sequence. Empowered by template2vec, a novel, simple yet effective method to extract the semantic information hidden in log templates, LogAnomaly can detect both sequential and quantitive log anomalies simultaneously, which were not done by any previous work. Moreover, LogAnomaly can avoid the false alarms caused by the newly appearing log templates between periodic model retrainings. Our evaluation on two public production log datasets show that LogAnomaly outperforms existing log-based anomaly detection methods.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
244 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献