Federated Meta-Learning for Fraudulent Credit Card Detection

Author:

Zheng Wenbo12,Yan Lan23,Gou Chao4,Wang Fei-Yue23

Affiliation:

1. School of Software Engineering, Xi'an Jiaotong University

2. The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences

3. School of Artificial Intelligence, University of Chinese Academy of Sciences

4. School of Intelligent Systems Engineering, Sun Yat-sen University

Abstract

Credit card transaction fraud costs billions of dollars to card issuers every year. Besides, the credit card transaction dataset is very skewed, there are much fewer samples of frauds than legitimate transactions. Due to the data security and privacy, different banks are usually not allowed to share their transaction datasets. These problems make traditional model difficult to learn the patterns of frauds and also difficult to detect them. In this paper, we introduce a novel framework termed as federated meta-learning for fraud detection. Different from the traditional technologies trained with data centralized in the cloud, our model enables banks to learn fraud detection model with the training data distributed on their own local database. A shared whole model is constructed by aggregating locallycomputed updates of fraud detection model. Banks can collectively reap the benefits of shared model without sharing the dataset and protect the sensitive information of cardholders. To achieve the good performance of classification, we further formulate an improved triplet-like metric learning, and design a novel meta-learning-based classifier, which allows joint comparison with K negative samples in each mini-batch. Experimental results demonstrate that the proposed approach achieves significantly higher performance compared with the other state-of-the-art approaches.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3