Anti-Forgery: Towards a Stealthy and Robust DeepFake Disruption Attack via Adversarial Perceptual-aware Perturbations

Author:

Wang Run12,Huang Ziheng12,Chen Zhikai3,Liu Li4,Chen Jing12,Wang Lina125

Affiliation:

1. School of Cyber Science and Engineering, Wuhan University, China

2. Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, China

3. Tencent Zhuque Lab

4. Fudan Development Institute, Fudan University, China

5. Zhengzhou Xinda Institute of Advanced Technology

Abstract

DeepFake is becoming a real risk to society and brings potential threats to both individual privacy and political security due to the DeepFaked multimedia are realistic and convincing. However, the popular DeepFake passive detection is an ex-post forensics countermeasure and failed in blocking the disinformation spreading in advance. To address this limitation, researchers study the proactive defense techniques by adding adversarial noises into the source data to disrupt the DeepFake manipulation. However, the existing studies on proactive DeepFake defense via injecting adversarial noises are not robust, which could be easily bypassed by employing simple image reconstruction revealed in a recent study MagDR. In this paper, we investigate the vulnerability of the existing forgery techniques and propose a novel anti-forgery technique that helps users protect the shared facial images from attackers who are capable of applying the popular forgery techniques. Our proposed method generates perceptual-aware perturbations in an incessant manner which is vastly different from the prior studies by adding adversarial noises that is sparse. Experimental results reveal that our perceptual-aware perturbations are robust to diverse image transformations, especially the competitive evasion technique, MagDR via image reconstruction. Our findings potentially open up a new research direction towards thorough understanding and investigation of perceptual-aware adversarial attack for protecting facial images against DeepFakes in a proactive and robust manner. Code is available at https://github.com/AbstractTeen/AntiForgery.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Retentive Proactive Defense Against DeepFakes;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

2. Coexistence of Deepfake Defenses: Addressing the Poisoning Challenge;IEEE Access;2024

3. Robust Training for Deepfake Detection Models Against Disruption-Induced Data Poisoning;Information Security Applications;2024

4. A Dynamic Ensemble Selection of Deepfake Detectors Specialized for Individual Face Parts;Electronics;2023-09-18

5. A GAN-Based Defense Framework Against Model Inversion Attacks;IEEE Transactions on Information Forensics and Security;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3